
Bellman Value Decomposition for Task Logic
in Safe Optimal Control

Anonymous

Fig. 1: Value-Decomposition PPO (VDPPO). The Bellman value for a wide range of temporal logic formulae (e.g., multi-goal, recurrence,
stability, safety) decomposes into a value graph connected by atomic Bellman equations (Thms. 1–4). We propose VDPPO, an algorithm
that exploits the structure of the value graph to learn policies for complex, high-dimensional tasks. Our approach is validated on hardware
with Herding and Delivery, two tasks involving a heterogeneous team of drones and a quadruped.

I. ABSTRACT

Real-world tasks involve nuanced combinations of goal and
safety specifications, which often directly compete. In high
dimensions, the challenge is exacerbated: formal automata
become cumbersome, and the combination of sparse rewards
tends to require laborious tuning. In this work, we consider the
structure of the Bellman Value as a means to naturally organize
the problem for improved automatic performance without intro-
ducing additional abstractions. Namely, we prove the Bellman
Value for a complex task defined in temporal logic can
be decomposed into a graph of Bellman Values, where the
graph is connected by a set of well-studied Bellman equations
(BEs): the Reach-Avoid BE, the Avoid BE, and a novel type,
the Reach-Avoid-Loop BE. From this perspective, we design a
specialized PPO variant, Value-Decomposition PPO (VDPPO)
that uses a single learned representation by embedding the
decomposed Value graph. We conduct a variety of simulated
and real multi-objective experiments, including delivery and
herding, to test our method on diverse high-dimensional systems
involving heterogeneous teams and complex agents. Ultimately,
we find this approach greatly improves performance over
existing baselines, balancing safety and liveness automatically.

II. INTRODUCTION AND RELATED WORK

Reinforcement Learning (RL) typically optimizes expected
cumulative reward [1], making it ill-suited for safety-critical or

temporally structured tasks that require worst-case guarantees
or satisfaction at specific times. Such objectives are naturally
expressed using Temporal Logic (TL) [2], but TL itself does not
prescribe how to act. Existing RL–TL methods therefore face
a trade-off between sparse binary rewards that slow learning
and hand-crafted dense rewards that can misalign objectives.

Hamilton–Jacobi Reachability (HJR) [3, 4] provides optimal
controllers for basic safety and liveness tasks via max–min
Bellman equations, yielding dense and informative learning
signals. Recent work showed that certain TL tasks can
be solved exactly by decomposing their value functions
into sequences of simple HJR problems [5]. We generalize
this idea to a broad class of TL specifications, introduce a
value-function decomposition algebra and a corresponding
PPO variant, and demonstrate effectiveness in simulation and
real-world drone and quadruped experiments.

RL with TL specifications A large body of work study RL
with TL specifications [6, 7, 8, 9, 10, 11], including approaches
based on Non-Markovian Reward Decision Processes [12, 13,
14, 15, 2], approximated quantitative semantics [16, 17, 18],
modified Bellman equations [19, 20, 21], or multiple discounted
rewards [22, 23, 24]. In contrast, our method exactly decom-
poses TL value functions into simpler objectives solved via
HJR, avoiding semantic approximation and long-horizon reward
sparsity. Additional discussion appears in the Appendix and [5].

Constrained, Multi-Objective, and Goal-Conditioned RL.

1

Constrained MDPs (CMDPs) maximize discounted rewards
subject to constraints, typically via Lagrangian relaxation
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38], but
require careful tuning and are ill-suited to general TL objectives.
Multi-objective RL instead Pareto-optimizes multiple reward
sums [39, 40, 41, 42, 43, 44, 45], yet does not naturally
encode TL structure. Goal-conditioned RL learns policies over
a family of goals [46, 47, 48, 49, 50, 51, 52, 49, 50, 53], but
differs fundamentally from TL settings, where all specifications
must be jointly satisfied.

Hamilton–Jacobi Reachability. HJR was originally devel-
oped to compute value functions for reach, avoid, and reach-
avoid problems in continuous time and space [3, 4], correspond-
ing to the quantitative semantics of eventually, always, and until
predicates [54]. Recent work has successfully integrated HJR
into RL frameworks [55, 56, 57, 58, 59, 60]. Our work builds
on these results by decomposing value functions for complex
TL objectives into sequences of simpler HJR problems.

III. CONTRIBUTIONS

1) We establish a formal connection between Temporal
Logic and Bellman Value theory, characterizing both
equivalences (Lem. 1) and divergences (e.g., Rem. 1).

2) We prove that a broad class of TL predicates admits an
exact decomposition of the Value function into a directed
graph of atomic Bellman equations (Thms. 1, 3, 4),
including a novel Reach–Avoid–Loop Bellman equation
for always–eventually specifications (Lem. 2).

3) We introduce VDPPO, an algorithm that solves the
decomposed value graph, and demonstrate its effectiveness
through extensive simulation and real-world hardware
experiments, achieving improved speed and success over
existing methods.

IV. PRELIMINARIES

Given a discrete-time system xt+1 = f(xt, at) with state
xt ∈ X ⊆ Rn and action at ∈ A ⊆ Rm, a trajectory beginning
at x is a sequence of states ξαx := (x, ...) ∈ X := XN arising
from actions α = (a, ...) ∈ A := AN. We let ξx(t) and α(t)
be the state and action at time t.

To specify desired properties of a trajectory, let an atomic
predicate r : Rn → {true, false} be defined by a bounded
predicate function r : Rn → R, also known as a target or
reward function in HJR or RL. Given a trajectory and time
(ξx, t), r is satisfied (written (ξx, t) |= r) iff r(ξx(t)) ≥ 0, and
thus, r is employed to represent the arrival of a trajectory at
a goal or obstacle (defined by the 0-level-set of r).

To represent complex tasks, TL defines a logic for modular
composition of predicates [61]. Namely, predicates may be
composed via negation (¬), conjunction/and (∧), the Until
operator (U) and the next operator (X). With these operations,
one may also define disjunction/or (∨), finally/eventually (F),
and globally/always (G). We give these operators via the
robustness score ρ : Rn → R [62] because this is the payoff
used in the corresponding HJB optimal control problem [3, 4].
See the Appendix for more details.

Definition 1. For any predicate p composed of
atomic predicates ri, let the robustness score
ρ[p] : X× N → R be defined inductively with

ρ[ri](ξx, t) := ri(ξx(t))

ρ[¬p](ξx, t) := −ρ[p](ξx, t)

ρ[p ∧ p′](ξx, t) := min
{
ρ[p](ξx, t), ρ[p

′](ξx, t)
}

ρ[p ∨ p′](ξx, t) := max
{
ρ[p](ξx, t), ρ[p

′](ξx, t)
}

ρ[Xp](ξx, t) := ρ[p](ξx, t+ 1)

ρ[Fp](ξx, t) := max
τ≥t

ρ[p](ξx, τ)

ρ[Gp](ξx, t) := min
τ≥t

ρ[p](ξx, τ)

ρ[pUp′](ξx, t) :=

max
τ≥t

min

{
ρ[p′](ξx, τ), min

κ∈[t,τ]
ρ[p](ξx, κ)

}
with (ξx, t) |= p ⇐⇒ ρ[p](ξx, t) ≥ 0.

Note that Fp = ⊤Up, where ⊤ is true, and thus it suffices
to consider only the U and G operations in the analysis.
Similarly, Gq ∧ Gq′ = G(q ∧ q′) = Gq′′ so we will write
our always-specifications together. With this syntax, one
may express the satisfaction of complex specifications over
trajectories formally and succinctly.

V. PROBLEM FORMULATION

In this work, we consider the problem of synthesizing
optimal actions α and a policy π : X → A (Appendix),
such that for any initial state x the resulting trajectory ξαx
maximizes the payoff ρ for a given predicate. We assume the
system begins at t = 0 and evolves indefinitely. For brevity,
we let ρ[p](ξ) := ρ[p](ξ, 0). This leads to the following
infinite-horizon Safe Optimal Control Problem (SOCP),

maximizeα ρ[p](ξαx),
s.t. ξαx (t+ 1) = f (ξαx (t), α(t)) .

Note, because ρ is defined by temporal extrema (max/min
over time), this program induces behavior characterized by
its outlying performance, in contrast with a sum-based SOCP
(in canonical RL [1]) which selects for average behavior. This
objective is explicitly captured by the Bellman Value function,
the “high score” function for the given SOCP.

Definition 2. For a predicate p, we aim to solve the
Bellman Value function

V ∗[p](x) := max
α

ρ[p](ξαx). (1)

We have defined the Bellman Value for a general TL
predicate p, or V ∗

p for brevity, but in fact, for the operations Gq
and qU r this object has been extensively studied in the HJR
literature [3, 57, 63]. Namely, the Value for these operations
are known as the AVOID (A) and REACH-AVOID (RA) Values.
In this context, the following contractive Bellman operations
for these extrema-based Values have been derived [57].

2

Definition 3. The A and RA Bellman operators [57],

Bγ
A[V] := (1− γ)q + γmin{V +, q},

Bγ
RA[V] := (1− γ)min{r, q}+ γmin{max{V +, r}, q},

where V +(x) := maxa V (f(x, a)), are contractive.
For V ∗[Gq] and V ∗[qUr] defined in (1), the fixed
points

V γ [Gq] = Bγ
A[V

γ [Gq]] & V γ [qUr] = Bγ
RA[V

γ [qUr]],

satisfy limγ→1 V
γ = V ∗ by Thm. 1 of [57].

These Bellman operators differ from those which arise
with a discounted-sum [1], as they propagate maximum or
minimum (extremum) values, thus encouraging behavior
defined by outlying performance. This has proved to make the
RL algorithms based on these equations significantly better
at safety and achievement tasks [55, 64].

In a recent work [5], it was demonstrated that for simple
conjunctions Fr ∧ Gq and Fr1 ∧ Fr2, one may decompose the
corresponding Bellman Values into these “atomic” BE, which
in some ways resembles the base case for what follows. In
this work, we generalize this principle, demonstrating that
the A-BE and RA-BE, along with the novel REACH-AVOID-
LOOP BE (Lem. 2), serve as a set of “atomic” building blocks
to decompose the Bellman Value of complex TL predicates.

VI. MOTIVATION

A. Why the Value function?

Above all, the Value function serves to define an optimal
policy for autonomy. Moreover, this Value function has several
properties which motivate the work, and we discuss them here.

Value functions are stable, policies need not be. While
the value function is Lipschitz continuous, its gradient—and
thus the optimal policy—may be discontinuous. Consequently,
nearby states can induce very different optimal trajectories,
making direct policy learning unstable under noise.

The value remains informative even for infeasible tasks.
V ∗
p (x) characterizes both satisfiability (≥ 0) and degree

of violation. Hence, maximization produces policies that
minimize failure when satisfaction is impossible.

Value decomposition yields dense, aligned learning signals.
Sparse binary rewards provide little guidance, while dense re-
wards under discounted sums often conflate with TL objectives.
Decomposing the value function produces a hierarchy of dense
rewards that directly reflect the structure of the TL specification.

Extremum-based decomposition enforces safety without
tuning. Because each subproblem is governed by an extremum-
based Bellman equation, worst-case and best-case outcomes
propagate without additive trade-offs. This naturally prioritizes
safety and goal achievement, avoiding the Lagrangian tuning
required by constrained RL methods [28].

B. Optimality versus Satisfaction

The decomposition of formal logic is well-studied in several
contexts, including formal verification [65], automata theory

[66], and temporal logic trees (TLT) [67]. This body of
work has established a rich framework for understanding the
structure and properties of temporal logic formulas, and has led
to performant decompositional learning methods for complex
tasks [68]. However, the algebra of TL, which is equivalent
to the algebra over the robustness score, is fundamentally
distinct from that of the Value function due to the presence
of the maximum over action sequences or control policies in
(2). This distinction is not only relevant to theoretical analysis
but can lead to safety failures and sub-optimality in real world
applications. We illustrate this with the following remark and
offer concrete counter-examples in the Appendix.

Remark 1. The following TL identity always holds:

ρ[Fr ∧ Gq](ξαx) = min{ρ[Fr](ξαx), ρ[Gq](ξαx)}.

By contrast, for the corresponding Value, we have

V ∗[Fr ∧ Gq](x) ≤ min{V ∗[Fr](x), V ∗[Gq](x)},

where the inequality is indeed strict when no single choice
of action sequence can both reach r and avoid q.

VII. RESULTS

In this section, we present our main results regarding the
decomposition of the Bellman Value for complex TL predicates.
We begin by discussing the relationship between the Value and
TL algebra, and then proceed to present a series of decompo-
sition theorems culminating in a general decomposition result
for a class of TL predicates. In general, we seek to express
the Bellman Value for a complex predicate in terms of simpler
components that are themselves composed with the fundamental
Bellman equations of HJR (and thus may be solved similarly),
and we will observe that these are associated with subsets of
the overall logic. We give all proofs in the Appendix.

A. Agreeable Algebra

We begin by noting the similarity between the decomposition
of the Bellman Value and TL algebra. The presence of the
maxα in (1) does not always distinguish the Value algebra from
that of TL, namely when the TL is also defined by maxima,
as with ∨ and a “right-side” U (for which F, is a special case).
The commutativity of max in this case yields a decomposition
that mirrors that of the TL, giving the following results.

Lemma 1. Let vp be the predicate for V [p], i.e.
(ξx, t) |= vp ⇐⇒ V [p](ξx(t)) ≥ 0. Recall that

ρ[vp](ξx, t) := V [p](ξx(t)). (2)

The following properties hold:
1) V [a ∨ b](x) = V [va ∨ vb](x)
2) V [aU b](x) = V [aU vb](x)

This result makes some compositions of the Value simple to
consider. For example, we may know that the Value for a series
of Until predicates is equivalent to a chain of Until Values, i.e.
a chain of RA Values. Moreover, the Value for FG, also known

3

Fig. 2: E.g. N -Until-Conjunction Value Decomposition. Here we illustrate the primary decomposition result (Thm. 1 extension, Appendix),
with a GridWorld example (left) for a given specification. The corresponding DVG is shown (center left) with each node representing a
decomposed Value, and edges representing dependencies. In the center right, a subset of decomposed Values solved with dynamic programming
are shown, along with the discounted solution produced by VDPPO. On the right, the optimal path for a given initial condition is shown.

as the reach-stay problem, is simply a R Value where the target
is the A Value associated with the always predicate. See the
Appendix for more details. These results, however, do not apply
when the TL is defined by min as with ∧, and thus are insuffi-
cient to decompose the Value for many common TL predicates.

B. N -Until-Conjunction Decomposition

We next present the first major result of the work concerning
the decomposition of the Bellman Value for the conjunction
of N Until predicates, or equivalently, the N -RA Value.
This result is a generalization of the RR Value function
decomposition in [5], which explored the independent pairwise
combination of two reach tasks.

Theorem 1. For the predicate p :=
∧

i∈I(qi U ri),
the corresponding Bellman Value satisfies

V ∗[∧
i

(qi U ri)
]
(x) = V ∗[q̃ U r̃

]
(x)

where,

r̃ :=
∨
i

(
ri ∧ v∗p−i

)
, q̃ :=

∧
i

qi,

and p−i :=
∧

j∈I\{i} qj U rj .

This result gives an equivalence between the N -RA Value
and the Value function of a single RA task, which has abstract
reach and avoid predicates in the sense that they no longer
represent physical goals or obstacles. Instead, the new reach
predicate r̃ is defined by the disjunction of N conjunctions that
each correspond to reaching one of the predicates ri and being
able to satisfy the remaining logic p−i, i.e. having V ∗

p−i > 0.
The new avoid predicate q̃ is defined by the conjunction of all
N-avoid predicates and hence implies that we need to avoid
all qj . Intuitively, Thm. 1 breaks down the optimal value for
the conjunction of N Untils into the goal of reaching any
of the predicates while being able to satisfy the rest of the

predicate of N − 1 Until operations, denoted p−i, where ri
has been ’popped off’ the original predicate.

Notably, Thm. 1 is recursive, and, therefore, we may reapply
the result iteratively to the N -RA Value to break it into N
decomposable sub-Values and so forth, giving 2N −1 Values in
total. Crucially, as each of these Values is equivalent to a special
Until Value, they may each be solved with the discounted
RA-BE with their respective rewards. We demonstrate this
result in Fig.2 with a simple GridWorld problem, where the
true solution may be solved via dynamic programming.

Analogous to the proof of the Reach-Always-Avoid Value
in [5], this result can in fact be extended to the case where
p :=

∧
i∈I (qi U ri) ∧ Gq. In this case, the only difference

is that the presence of Gq persists to the ultimate sub-Value,
which is at this point equivalent to the RAA Value posed in
[5]. We give this in the Appendix.

C. Recursive Decompositions

In this section, we consider the family of recurrence relation
operations corresponding to the composition of G with U (for
which GF is a special case). To always-eventually satisfy a
predicate implies that a trajectory must continue to satisfy it
indefinitely. These compositions are particularly important as
they encompass the liveness property, arising in safety-critical
applications where certain states or tasks must be revisited
or regenerated in some sense. Moreover, this operation is
significantly less strict than the FG (which requires that we
eventually satisfy the predicate continuously), and thus more
desirable, when the possibility of satisfaction is unknown.

The temporal coupling of the outer G with the inner TL
makes the Value of these compositions more challenging to
characterize and decompose, and in general may not be unique.
We begin with a formal characterization of the Value in this
situation for the base-case predicate G(qU r).

Theorem 2. For the predicate p := G (q U r) the

4

Fig. 3: E.g. G(N -Until-Conjunction) Value Decomposition. We illustrate the recursive decomposition result (Thm. 3), with a GridWorld
example (left) for a given specification. The plots here are analogous to those of Fig. 2, with the DVG (center left), decomposed Values
(center right), and optimal path (right). Note, the optimal path for the discounted case differs due to the subtle effect of discounting the
Value associated with a G composition, which selects for shorter loops (Sec. VII-C).

corresponding Bellman Value satisfies

V ∗[G (q U r)](x) = V ∗[qU (r ∧ Xv∗p)](x).

This result demonstrates that the Value function associated
with the predicate G (q U r) can be characterized recursively.
Intuitively, one may consider this Value as a special RA
Value that aims to reach an intersection of the target predicate
r and its own satisfiable set (denoted by v∗p) at the next step,
and hence, maintain the ability to satisfy it again in the
future. More generally, we may expand this result to the case
involving a composition fo G with N -Until-Conjunctions,
formalized in the following result.

Theorem 3. Given the set of coupled Bellman Values
of length J = |J |,

V ∗
j (x) := V ∗ [q̃j U (̃rj ∧ Xv∗j+1)

]
(x)

where J + 1 := 1, q̃j := qj ∧ (qj+1 ∨ rj+1), and
r̃j := rj ∧ (qj+1 ∨ rj+1), then ∀j, defined by

V ∗

G
∧

j∈J
(qj U rj)

 (x) = V ∗
j (x).

This result allows us to consider the problem of recurrently
reach-avoiding N tasks as a loop of N coupled RAℓ Values.
Note, in this case, the fixed iteration order is equivalent to
any ordering given in Thm. 1 because of the infinite nature
of the problem (see Appendix).

Although, these results appear like the previous
decompositions, it is important to note that they are
fundamentally different due to the implicit definition of the
Value. These characterizations do not guarantee uniqueness
or existence of the Value, and in continuous state spaces, they
may be ill-defined. To certify the existence in certain scenarios
(e.g. finite state spaces), we show in the Appendix that these

Values are equivalent to the limit of finite recurrence, however,
this is not generally a practical procedure.

Moreover, a straightforward application of the discounted
RA-BE yields a BE that is not guaranteed to be contractive,
due to the appearance of the Value in both (1 − γ) and
γ terms. To address these challenges, we propose a novel
contractive Bellman Equation, which we call the RA-Loop
(RAℓ) BE, which is guaranteed to solve the family of G(...)
predicates in the limit of discounting.

Lemma 2. For the set of J Values defined in Thm. 3,
let the RAℓ-BE be defined as

Bγ
RAℓ

[Vj] := (1− γ)min{r̃j , q̃j}+

γmin
{
max

{
min

{
r̃j , V

+

j+1

}
, V +

j

}
, q̃j

}
.

This is contractive such that V γ
j = Bγ

RAℓ
[V γ

j]
has a unique fixed point, satisfying
limγ→1 V

γ
j = V ∗[G(

∧
j∈J (qj U rj))].

Equipped with the RAℓ-BE, we can now tackle the problem
of computing the Value function for the family of G(...)
predicates effectively.

D. A general result for a class of predicates

Here, we give the final decompositional result of the paper,
combining several of the previous results. Note, we present
this as a culmination of the different algebraic decompositions
of the Value to certify the decomposition of a general class
of TL predicates, including all of those involved in the work.

Theorem 4. For the predicate

p :=

(∧
i∈I

(qi U ri)

)
∧ G

∧
j∈J

(qj U rj)

 ∧ Gq

the corresponding optimal Value satisfies

5

V ∗[p](x) = V ∗[q̃ U r̃
]
(x) where

r̃ :=
∨
i

(
ri ∧ v∗p−i

)
, q̃ :=

∧
k∈I×J

q̃k ∧ q,

p−i :=
∧

k∈I\{i}

(qk U rk)∧G

∧
j∈J

(qj U rj)

∧Gq.

Akin to previous results, Thm. 4 demonstrates that the given
predicate p, involving the conjunction of N -Until predicates and
the composition of G with N -Until predicates, may be rewritten
as a single RA Value. The residual Value of this decomposition
is the Value associated with the composition of G with N -
Until predicates, and can thus be recursively decomposed with
Thm. 3. See the Appendix for the complete proof.

VIII. ALGORITHM(S)

In this section, we introduce Value-Decomposition PPO, a
variant of PPO that solves the Bellman value associated with
the class of TL predicates in Sec. VII using the decomposed
value graph (DVG). We also describe the tools required to
generate the DVG and to solve it via dynamic programming
for low-dimensional problems. A graphical overview is shown
in Fig. 4, and all relevant code is provided in the Appendix.
valtr: Generating the DVG. We introduce valtr, a

tool that converts a parsed temporal logic specification into
the general predicate form of Thm. 4 by recursively applying
standard TL rules. This representation is then transformed into
the directed acyclic graph (DAG) of the DVG, where nodes
correspond to predicates, negations, max, min, and value
functions, and edges encode their dependencies. Cyclic G
compositions are handled via a special node, enabling efficient
parsing and transformation of arbitrary predicates into DVGs.
See the Appendix for details.

Dynamic Programming with the DVG. With the DVG,
one may compute the Value of a given predicate by performing
a topological sort of the DAG and applying dynamic program-
ming to compute the Value of each subformula in the correct
order. This allows us to compute the dynamic programming
solution for the low-d test cases given in Figs. 2 and 3.

VDPPO. Finally, we propose Value-Decomposition PPO
(VDPPO), a special variant of PPO which solves the Bellman
Value associated with the class of TL predicates in Sec. VII
by using the DVG. In this method, we use a shared trunk
for each decomposed Value in the DVG by embedding
the node representations with a one-hot vector. Depending
on the embedding value, the trunk is trained with the
corresponding discounted A-BE, RA-BE or RAℓ-BE by
using the appropriate BE to compute the advantage estimate.
Note, by definition this requires boot-strapping the current
Value estimate for each node, which is represented by the
feedback loop in Fig. 4. The policy also uses a shared trunk
with the embedded value and is trained with the standard
PPO objective, using the advantage estimate corresponding
to the embedding. This allows us to leverage the decomposed

Fig. 4: Graphical Depiction of Algorithms.

structure of the Value functions to efficiently learn policies
that satisfy complex TL specifications without sequentially
approximating the Value. See the Appendix for further details.

IX. SIMULATION RESULTS

To better understand the performance of VDPPO, we design
simulation experiments to answer the following research
questions:

(Q1): Does value decomposition help with satisfying more
complex temporal logic specifications (in both breadth
and depth)?

(Q2): Does value decomposition help with scaling to
multiple agents?

(Q3): Can VDPPO scale to more complex dynamics?
Additional ablation studies are provided in the Appendix.

A. Setup

Environments. We evaluate on four simulated domains:
DoubleInt (toy double integrator environment to focus on
TL challenges), Herding (a team of herders collaborates to
herd multiple targets to a designated location while avoiding
obstacles), Delivery (agents must continuously pick up and
deliver packages to a special agent while avoiding collisions
with each other and static obstacles), and Manipulator (a
robotic arm interacts with a cube and a drawer as specified
by TL formulas).

Baselines. We compare VDPPO with other model-free
methods that can solve TL specifications with black-box
dynamics. These include LCRL [69], a deep RL method that
solves TL tasks by augmenting the state space with an automata
representation of the TL formula, and an extension of Model
Predictive Path Integral (MPPI) [70] to tackle TL problems
[71], which we denote TL-MPPI. For each environment, LCRL
and VDPPO are run for the same number of update steps, while
for TL-MPPI we follow the hyperparameters chosen in [71].

Evaluation criteria. Performance is measured by success
rate on finite-horizon TL satisfaction; we additionally report
satisfaction rates of individual subformulas. All methods are
trained with three seeds and evaluated on 256 initial conditions.

B. Results

(Q1): Value decomposition improves scalability with
TL complexity. We study two TL families of increasing
complexity in a single-agent double-integrator environment.
Breadth specifications combine a safety constraint with an
increasing number of unordered Finally goals, while depth
specifications contain nested Finally operators enforcing
a fixed order. Results are shown in Fig. 9.

6

Fig. 5: Performance scaling with TL complexity. Value decomposition enables VDPPO to better scale by tackling smaller problems.

Fig. 6: Complex high-dimensional tasks. VDPPO greatly
outperforms baseline methods on more complex tasks.

All methods solve the simple case of 1 specification but
degrade as the number of specifications increases. VDPPO con-
sistently outperforms both baselines as the complexity of the TL
specifications increases in both breadth and depth, demonstrat-
ing the effectiveness of value decomposition in handling com-
plex TL tasks. This is particularly true in the depth case, where
both baselines achieve ≤ 40% success rate for a depth of n = 5.
This is because the probability of satisfying nested TL specifica-
tions by luck decreases exponentially with depth, making it diffi-
cult for non-decompositional methods to learn effective policies.

(Q2): Value decomposition strongly helps with increasing
number of agents. Compared to the Breadth plot where we
only increase the number of specifications, we scale both the
number of agents and the number of specifications simultane-
ously and show the results in Fig. 9. Increasing the number
of agents increases the action dimension, which increases the
difficulty of exploration. This degrades the performance of all
methods. However, VDPPO is least impacted by this and is
the only method that solves the problem with 5 agents.

(Q3): VDPPO shines on problems with difficult dynamics.
We now consider more challenging problems, either due to
complex interactions with uncontrolled agents (Herding),
needing to collaborate (Delivery), or complex dynamics
(Manipulator) and show the results in Fig. 6. In all

Fig. 7: Hardware Overview for Herding and Delivery Tasks

three tasks, VDPPO achieves the highest success rate by a
significant margin.

In the Appendix, we perform ablation studies to better
understand the performance gains of VDPPO.

X. HARDWARE RESULTS

Lastly, we perform hardware experiments corresponding to
the Herding and Delivery environments using a swarm
of Crazyflie (CF) drones collaborating with the Unitree Go2
to demonstrate the ability of VDPPO to solve complex task
specifications in high-dimensional real-world settings with
heterogeneous collaboration. See Fig. 7 for an overview.

A. Herding

In this experiment, we consider a team of one CF and the
Go2 tasked with herding three “sheep” CFs through a narrow
gap to a target location while avoiding obstacles and collisions.
The sheep CFs have a fixed nominal policy, using the softmin
to drive them away from the nearest obstacle or agent, and
thus will move only when approached.

The TL specification for the task is given by,

pherding := G(¬c) ∧ F(r0 ∧ Fr1) ∧ FG(rh),

where c denotes collisions, r0 the herd reaching the pre-gate
region, r1 passage through the gate, and rh arrival at the target.
This encodes a sequence of reach–avoid objectives followed
by a reach–stabilize objective requiring indefinite herding.

7

Fig. 8: Trajectory snapshots from Herding and Delivery hardware tasks. We show a long-exposure photo (left), and stills from
independent times (right), with depictions corresponding to those of the overview in Fig. 7.

The herders (CF and Go2) are initialized opposite the gap
from the herd and have asymmetric dynamics, with the Go2
moving more slowly. To satisfy the specification, the herders
must coordinate to pass through the gap, collect the herd, and
guide it to the target while avoiding obstacles. We train a
VDPPO policy using the DVG and deploy it on hardware,
where the agents adapt online to real-time state feedback.

Ultimately, we observe that the CF and Go2 learn to divide
the labor of the task such that the CF passes through the gap
to gather the agents (Fig.8.B), while the Go2 waits to receive
on the herding side (Fig.8.C). When the herd passes through
the narrow gap, the Go2 initially moves out of the way
(Fig.8.C) and then transitions to providing support, rapidly
shifting position to block the Herd from distributing across
the new space (Fig.8.E). This behavior is entirely emergent
and demonstrates the wide-ranging ability of VDPPO to solve
complex tasks automatically.

B. Delivery

In this experiment, we consider a team of two CFs and
the Go2 tasked with recurrently visiting agent-specific target
locations and recurrently revisiting the Go2 agent (to model
package delivery and resupply), while avoiding building
obstacles, collisions, and a “no fly zone” (for the CFs).

The TL specification for the task is given by,

pdelivery :=
∧
i

GF(ri) ∧
∧
i

GF(rsi) ∧ G¬ac ∧ G¬ob ∧ G¬nf

where the predicate ri captures CF i visiting target i, rsi
captures CF i visiting the Go2 (resupplying), ac captures aerial
collision, ob captures obstacle collision, and nf captures the no-

fly-zone (for the CFs only). Here, the task logic is dominated
by GF, and hence is largely solved with the RAℓ-BE.

In this environment, the CF targets jump to a new random
location after an agent has visited it, requiring a policy that is
conditioned to various target locations. The real difficulty of
this problem arises in the tightness of the layout; the obstacles
confine the Go2 to the central area where the CFs are not
allowed to fly (modeling a busy intersection), yet they must
visit one another to “resupply”. We again implement VDPPO
to learn a policy to solve the complex task and deploy it live.

Ultimately, we observe sophisticated coordination between
the three agents to distribute the difficulty of the task evenly.
Namely, as the CFs move around the outskirts of the arena,
avoiding one another carefully but not too cautiously (Fig.8.L),
the Go2 anticipates their movements, moving between each
of the agents (Fig.8.G-I) to be in position to resupply them
as close to their target as possible. This complex collaboration
generated by VDPPO allows the agents to rapidly meet
deliveries and resupply without crashing at all.

XI. CONCLUSION

In this work, we propose a novel approach to solving the
Bellman Value associated with complex temporal specifications
via decomposition. Namely, we demonstrate that for a large
class of TL predicates, the corresponding Bellman Value may
be decomposed into a graph of Values connected by a set of
“atomic” Bellman equations. With this perspective, we propose
VDPPO that is shown to solve optimal policies in complex
tasks well beyond existing methods. This work highlights a
novel and powerful approach to tackling complex task logic
for real-world autonomy.

8

APPENDIX
CONTENTS

A MORE RELATED WORKS 10

B TEMPORAL LOGIC 10

C LOGIC VS. VALUE EXAMPLES 14

D AGREEABLE ALGEBRA 15

E N -RA RESULTS 17

F N -RAℓ RESULTS 18

G G(. . .) FIXED POINT ITERATION 20

H GENERAL RESULT 26

I POLICY RESULTS 26

J VALTR DETAILS 31

K VDPPO DETAILS 31

L ENVIRONMENTS 31

M BASELINES 32

N ABLATIONS 32

O HARDWARE 32

USEFUL PROPERTIES AND NOTATION

We give here properties and notations for simplifying the following proofs. For a given action sequence α,

α := (a1, a2, . . .) ∈ A := AN

let a portion beginning at i and ending at j be written

αi:j := (ai, . . . aj).

Moreover, for a trajectory ξαx ,
ξαx := (x, x1, . . .) ∈ X := XN,

where xi+1 = f(xi, αi), it follows then that for α divided into αt− := α1:t & αt+ := αt+1:∞,

ξαx = ξ
αt+
y ,

where y = ξ
αt−
x (t). We then have the following result corresponding to the decomposition of a controlled trajectory, which

will be used ubiquitously.

Lemma 3. Let X s.t. |X | < ∞. Then for t ∈ N, α ∈ A, ξαx ∈ X, and, x ∈ X ,

max
α

max
t

f(ξαx , t) = max
t

max
αt−

max
αt+

f(ξ
αt+

ξ
α
t−

x (t)
, t).

9

A. MORE RELATED WORKS

We here give a slightly more expanded description of the related works compared to the main text. We refer the reader
to [5] for additional discussion of many of these works.

Reinforcement Learning with TL Objectives. Many works have explored ways to optimize objectives that encode TL
specifications [6, 7, 8, 9, 10, 11, 72] (or conversely learn TL specifications from agent behavior [73]). One line of such works
uses Non-Markovian-Reward Decision Processes (NMRDPs), which allow for history-dependent rewards [2, 13, 14, 15, 74].
Other works optimize the quantitative semantics associated with an STL objective, approximating the maximums and minimums
in a sum-of-discounted rewards fashion, which are then solved with traditional methods [16, 17], or otherwise encoding TL
objectives through expectations [18]. Several other methods also exist that attempt to optimize general objective functions
using non-traditional Bellman equations [19, 20, 21] or handle discounted sums of multiple rewards or penalties [22, 23, 24].
We also refer the reader to [75] for an approach that proceeds by composing learned sub-tasks into higher level ones using
an additional planning algorithms rather than breaking a high-level task down into subtasks. By contrast to most of these
previous approaches, our approach proceeds by decomposition of a TL-specified problem in an exact manner. Specifically,
we decompose the value function associated with a quantitative semantic for a TL predicate into value functions associated
with simpler objectives. These simpler objectives are then solved by leveraging powerful recent Hamilton-Jacobi Reachability
(HJR) methods. (Note that these decompositions of the value functions are fundamentally different from decompositions of
the quantitative semantics themselves.) This approach allows one to avoid approximations of the objective function or issues
associated with sparsity of long-horizon rewards, which commonly afflict the previous methods.

Constrained, Multi-Objective, and Goal-Conditioned RL A number of techniques in RL have arisen to handle
constraints or multiple goals. Constrained MDPs (CMDPs) attempt to maximize sums of discounted rewards
subject to a safety or liveness condition, which is often handled via a Lagrangian term in the objective function
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. For CMDPs, the Lagrangian term involved typically requires substantial
tuning for desired behavior, severly limiting its use for satisfying general TL tasks. Multi-objective RL techniques, by contrast
Pareto-optimize multiple sums of discounted rewards [39, 40, 41, 42, 43, 44, 45]. This allows users to balance multiple objectives,
but generally are not built for handling TL-like specifications. Goal-conditioned RL, by contrast, simultaneously learns policies for
a range of possible task specifications [46, 47, 48, 49, 50, 51, 52, 49, 50, 53]. At the time of deployment, a user can then decide
which specification is most appropriate. This is fundamentally different from TL tasks, where all specifications must be satisfied.

Hamilton-Jacobi Reachability Hamilton-Jacobi Reachability (HJR) methods were initially designed to solve value functions
associated with "reach", "avoid", or "reach-avoid" problems using traditional dynamic programming for continuous space
and times [3, 4]. The objectives for these tasks are precisely the quantitative semantics for eventually, never, and until
predicates. HJR approaches have recently been adapted to solve these same problems in RL settings, with exciting performance
[55, 56, 57, 58, 59, 60]. Our work builds on such advancements, using the RL algorithms developed by these building blocks
to accomplish higher-level tasks.

B. TEMPORAL LOGIC

In this section, we give further background on the temporal logic used in the main text. We begin with the logical definitions
of the operators ∨,∧,¬,X,F,G,U, alternatively defined by their robustness metric in the main text.

Definition 4. Let p, p′ be predicates, ξx ∈ X a trajectory beginning at x ∈ X , and t ∈ N a starting time. The relation
(ξx, t) |= p is defined as follows,

(ξx, t) |= ri ⇐⇒ ri(ξx(t)) ≥ 0,

(ξx, t) |= ¬p ⇐⇒ (ξx, t) ̸|= p,

(ξx, t) |= p ∧ p′ ⇐⇒ (ξx, t) |= p and (ξx, t) |= p′,

(ξx, t) |= p ∨ p′ ⇐⇒ (ξx, t) |= p or (ξx, t) |= p′,

(ξx, t) |= Xp ⇐⇒ (ξx, t+ 1) |= p,

(ξx, t) |= Fp ⇐⇒ ∃τ ≥ t s.t. (ξx, τ) |= p,

(ξx, t) |= Gp ⇐⇒ ∀τ ≥ t, (ξx, τ) |= p,

(ξx, t) |= pUp′ ⇐⇒ ∃τ ≥ t s.t. (ξx, τ) |= p′ and

∀κ ∈ [t, τ], (ξx, κ) |= p.

From these definitions, we may certify a few equivalence relations for rearranging certain combinations of operators, which
will later prove to be useful. Note, for the interested reader all of the following equivalences may be automatically verified
with the tool Spot [76].

10

Lemma 4.

(q1 U r1)∧(q2 U r2) ≡
(q1 ∧ q2)U

(
(r1 ∧ q2 U r2) ∨ (r2 ∧ q1 U r1)

)
Proof. We show this via double entailment.

1. LHS |= RHS:
Suppose σ, 0 |= q1 U r1 ∧ q2 U r2. Then,

1) Since σ, 0 |= q1 U r1, there exists t1 ≥ 0 such that σ, t1 |= r1, and for all 0 ≤ k < t1, σ, k |= q1.
2) Since σ, 0 |= q2 U r2, there exists t2 ≥ 0 such that σ, t2 |= r2, and for all 0 ≤ k < t2, σ, k |= q2.

Let t = min(t1, t2). Since σ, k |= q1 and σ, k |= q2 for all 0 ≤ k < t, we have σ, k |= q1 ∧ q2 for all 0 ≤ k < t.
We now show that the goal is reached at time t.

• (t1 ≤ t2): Then, t = t1, and σ, t |= r1. Since t2 ≥ t1 and σ, k |= q2 for all t ≤ k < t2, we have σ, t |= q2 U r2. Hence,
σ, t |= r1 ∧ q2 U r2.

• (t2 < t1): Then, t = t2, and σ, t |= r2. Since t1 > t2 and σ, k |= q1 for all t ≤ k < t1, we have σ, t |= q1 U r1. Hence,
σ, t |= r2 ∧ q1 U r1.

Thus, σ, 0 |= (q1 ∧ q2)U
(
(r1 ∧ q2 U r2) ∨ (r2 ∧ q1 U r1)

)
.

2. RHS |= LHS:
Suppose σ, 0 |= (q1 ∧ q2)U

(
(r1 ∧ q2 U r2) ∨ (r2 ∧ q1 U r1)

)
. Then, there exists t ≥ 0 such that

• σ, t |= (r1 ∧ q2 U r2) ∨ (r2 ∧ q1 U r1)

• For all 0 ≤ k < t, σ, k |= q1 ∧ q2.

We now split into two cases.

1) (σ, t |= r1 ∧ q2 U r2):

• σ, t |= r1
• Since σ, k |= q1 for all 0 ≤ k < t, we have σ, 0 |= q1 U r1.
• There exists t2 ≥ t such that σ, t2 |= r2, and σ, k |= q2 for all t ≤ k < t2.
• Since σ, k |= q2 for all 0 ≤ k < t2, we have σ, 0 |= q2 U r2.
• Thus, σ, 0 |= q1 U r1 ∧ q2 U r2.

2) (σ, t |= r1 ∧ q2 U r2): The reasoning is symmetric to the previous case, yielding σ, 0 |= q1 U r1 ∧ q2 U r2.

Thus, σ, 0 |= q1 U r1 ∧ q2 U r2.
Since we have shown both directions, the equivalence holds.

Lemma 5.

p :=

n∧
i=1

(qi U ri) ≡
(n∧
i=1

qi
)
U
(n∨
i=1

(
ri ∧ p−i

))
where p−i :=

∧n
j=1,j ̸=i(qj U rj).

Proof. We prove this using induction on n.

Base Case (n = 2): This is exactly the previous lemma 4.

Inductive Step: Assume the statement holds for n = k, i.e.,

k∧
i=1

(qi U ri) ≡
(k∧
i=1

qi
)

︸ ︷︷ ︸
:=q̃

U
(k∨
i=1

(
ri ∧

n∧
j=1,j ̸=i

(qj U rj)
))

︸ ︷︷ ︸
:=r̃

.

11

We need to show it holds for n = k + 1.
k+1∧
i=1

(qi U ri) =
(k∧
i=1

(qi U ri)
)
∧ (qk+1 U rk+1)

≡ q̃ U r̃ ∧ (qk+1 U rk+1)

≡ (q̃ ∧ qk+1)U

((̃r ∧ qk+1 U rk+1) ∨ (rk+1 ∧ q̃ U r̃))

Note that q̃ ∧ qk+1 =
∧k+1

i=1 qi. For the first part,

r̃ ∧ qk+1 U rk+1 =

k∨
i=1

(
ri ∧

k∧
j=1,j ̸=i

(qj U rj)
)
∧ qk+1 U rk+1

=

k∨
i=1

(
ri ∧

k∧
j=1,j ̸=i

(qj U rj) ∧ qk+1 U rk+1

)

=

k∨
i=1

(
ri ∧

k+1∧
j=1,j ̸=i

(qj U rj) ∧ qk+1 U rk+1

)
.

For the second part,

rk+1 ∧ q̃ U r̃ = rk+1 ∧
k∧

i=1

(qi U ri),

= rk+1 ∧
k+1∧

j=1,j ̸=k+1

(qj U rj).

Combining these two parts completes the inductive step:
k+1∨
i=1

(
ri ∧

k+1∧
j=1,j ̸=i

(qj U rj)
)
.

Since the base case and inductive step hold, the statement holds for all n ≥ 2.

Corollary 1.

p :=

n∧
i=1

(qi U ri) ∧ Gq ≡
(n∧
i=1

qi ∧ q
)
U
(n∨
i=1

(
ri ∧ p−i

))
where p−i :=

∧n
j=1,j ̸=i(qj U rj) ∧ Gq.

Proof. It suffices to show that Gq = qU r̃ where r̃ = Gq. This follows directly from the definition of G and U,

σ, 0 |= Gq ⇐⇒ ∀t ≥ 0, σ, t |= q

⇐⇒ ∃t′ ≥ 0 s.t. σ, t′ |= Gq

and ∀0 ≤ t < t′, σ, t |= q

⇐⇒ σ, 0 |= qU r̃.

Additionally, we can show this kind of rearrangement for the GU composition as well, given by the following result.

Lemma 6.
G(qU r) ≡ qU (r ∧ XG(qU r))

Proof. We show this via double entailment.

1. (LHS |= RHS) Suppose σ, 0 |= G(qU r).

12

• For all t ≥ 0, there exists st ≥ t such that σ, st |= r and ∀0 ≤ t′ < st, σ, t
′ |= q. In particular, for t = 0, there exists

s0 ≥ 0 such that σ, s0 |= r.
• Since G(qU r) is a tail property, we have σ, s0 + 1 |= G(qU r).
• Thus, σ, s0 |= r ∧ XG(qU r).
• Hence, σ, 0 |= qU (r ∧ XG(qU r)).

2. (RHS |= LHS) Suppose σ, 0 |= qU (r ∧ XG(qU r)).

• By definition of U, there exists t0 ≥ 0 such that σ, t0 |= r ∧ XG(qU r) s.t. ∀0 ≤ t < t0, σ, t |= q.
• The conjunction implies that σ, t0 + 1 |= G(qU r).
• Since G(qU r) is a tail property, this implies that σ, 0 |= G(qU r).

Since we have shown both directions, the equivalence holds.

Next, we may extend this to the multi-Until case, in order to capture the behavior of multiple recurrent Until operators.
Notably, in this case, the order does not matter, as all must be satisfied infinitely often. This is formalized in the following result.

Lemma 7. Given
p := G

(
(q1 U r1) ∧ (q2 U r2)

)
,

it holds that

p ≡ q̃1 U
(
r̃1 ∧

(
q̃2 U (̃r2 ∧ p)

))
≡ q̃2 U

(
r̃2 ∧

(
q̃1 U (̃r1 ∧ p)

))
,

where q̃i := qi ∧ (qj ∨ rj), r̃i := ri ∧ (qj ∨ rj).

Proof. We show this via double entailment. For brevity, let w1 := (q1 ∨ r1), w2 := (q2 ∨ r2).

1. (LHS |= RHS) Assume σ, 0 |= p.

• For all t ≥ 0, σ, t |= (q1Ur1) ∧ (q2Ur2). Choose k1 ≥ 0 with σ, k1 |= r1 and σ, t |= q1 for t < k1. Then σ, t |= w2 for
t ≤ k1, so σ, t |= q1 ∧ w2 for t < k1.

• From σ, k1 |= q2Ur2, choose k2 ≥ k1 with σ, k2 |= r2 and σ, t |= q2 for k1 ≤ t < k2. Since p holds globally, σ, t |= w1

on [k1, k2] and σ, k2 |= p.

Thus σ, k1 |= q̃2 U (̃r2 ∧ p), so σ, 0 satisfies the RHS.

2. (RHS |= LHS) Assume σ, 0 satisfies the RHS.

• There exists k1 ≥ 0 with σ, k1 |= r̃1 ∧Ψ and σ, t |= q1 ∧ w2 for t < k1, where

Ψ := q̃2 U (̃r2 ∧ p).

• From Ψ there exists k2 ≥ k1 with σ, k2 |= r̃2 ∧ p and σ, t |= q2 ∧ w1 for k1 ≤ t < k2.

Since σ, k2 |= p, the property (q1Ur1) ∧ (q2Ur2) holds for all t ≥ k2. Using the witnesses k1 and k2 and the safety
conditions above, it also holds for all t < k2. Hence σ, 0 |= p.

Both directions hold, so the equivalence follows.

We now give a logical equivalence for the general class of predicates considered in Thm. 4.

Lemma 8. Consider the formula pI,J defined as

pI,J :=
∧
i∈I

G(qi U ri) ∧
∧
j∈J

(qj U rj) ∧ Gq

Then, pI,J can be equivalently written as a single nested until formula:

pI,J ≡ q̃I,J U r̃I,J ,

13

where

q̃I,J :=
∧
j∈J

qj ∧ q ∧
∧
i∈I

(qi ∨ ri),

r̃I,J :=
∨
j∈J

rj ∧ ΦI,J\{j}

and
pI,∅ ≡ G

(∧
i∈I

(
qi ∧ q

)
U
(
ri ∧ q

))
.

Proof. We start by proving pI,∅. Then, we prove pI,J .

pI,∅ :=
∧
i∈I

G(qi U ri) ∧ Gq,

≡ G
(∧
i∈I

(qi U ri) ∧ q
)
,

≡ G
(∧
i∈I

(
qi ∧ q

)
U
(
ri ∧ q

))
.

Now we prove pI,J . Define r̃U,J as the reward function obtained when applying the transformation to a conjunction of
until formulas, i.e.,

r̃U,J :=
∨
j∈J

{
rj ∧

∧
j∈J\{j}

(qj U rj)
}
.

Then,

pI,J :=
∧
i∈I

G(qi U ri) ∧
∧
j∈J

(qj U rj) ∧ Gq,

≡
∧
i∈I

G(qi U ri) ∧ q̃U,J U r̃U,J ∧ Gq,

≡
(
q̃U,J ∧ q ∧

∧
i∈I

(qi ∨ ri)
)
U
(
r̃U,J ∧

∧
i∈I

qi U ri ∧ Gq
)
.

Examining the right argument of the U operator, we see that

r̃U,J ∧
∧
i∈I

qi U ri ∧ Gq

=
(∨
j∈J

{
rj ∧

∧
j∈J\{j}

(qj U rj)
})

∧
∧
i∈I

qi U ri ∧ Gq,

=
∨
j∈J

(
rj ∧

∧
j∈J\{j}

(qj U rj) ∧
∧
i∈I

qi U ri ∧ Gq

︸ ︷︷ ︸
:=ΦI,J\{j}

)
.

Plugging this back in completes the proof.

C. LOGIC VS. VALUE EXAMPLES

In this section we reproduce an argument from [5] to demonstrate the following point: the algebraic relations that apply
to the quantitative semantics in TL do not generally apply to the optimal value functions associated with the quantitative
semantics. Many previous works have explored and leveraged the algebraic relations dictating quantitative semantics, while
we focus on building an algebra for the value functions. An example highlighting the difference between the two is as follows.

Consider a reach-always-avoid (RAA) problem (i.e. reach a target set while avoiding an obstacle both before and after the
target is reached) in which an agent would like to canoe across a river without hitting any rocks. Let r represent reaching the
other side of the river and q represent not hitting a rock. The TL formula for the RAA problem is then Fr ∧ Gg. By definition,
the following algebraic decomposition of the quantitative semantic for this predicate always holds:

ρ[Fr ∧ Gg](ξαx) = min {ρ[Fr](ξαx), ρ[Gg](ξαx)} . (3)

14

However, the analogous relation does not generally hold for the optimal value functions. To see this point, recall that

V ∗[Fr](x) := max
α

ρ[Fr](ξαx),

V ∗[Gq](x) := max
α

ρ[Gq](ξαx),

V ∗[Fr ∧ Gq](x) := max
α

ρ[Fr ∧ Gq](ξαx)

= max
α

min {ρ[Fr](ξαx), ρ[Gg](ξαx)} .

It is always the case that

max
α

min {ρ[Fr](ξαx), ρ[Gg](ξαx)}

≤ min
{
max
α

ρ[Fr](ξαx),max
α

ρ[Gg](ξαx)
}
,

so that
V ∗[Fr ∧ Gq](x) ≤ min {V ∗[Fr](x), V ∗[Gq](x)} . (4)

By contrast with the equality in 3, the inequality in 4 may indeed by strict. For example, suppose that I begin in a state
x for which I can either (a) stay still indefinitely in my current state or (b) get across the river while necessarily hitting a
rock on the way. In this case V ∗[Fr](x) ≥ 0 and V ∗[Gq](x) ≥ 0, but V ∗[Fr ∧ Gq](x) < 0.

To summarize, even when an algebraic relation holds for the quantitative semantics of some predicate (as in 3), the
corresponding algebraic relation for the optimal value functions may not hold. Instead, the two expressions may at best be related
by an inequality (as in 4). This observation motivates our work on algebraically rules for decomposing optimal value functions.

D. AGREEABLE ALGEBRA

In this section, we certify the algebraic properties of Bellman Value functions that match those of logic, corresponding
to Lem. 1 from the main text, restated here for clarity. These will prove fundamental to the later derivations.

Lemma 1. Let vp be the predicate for V [p], i.e. (ξx, t) |= vp ⇐⇒ V [p](ξx(t)) ≥ 0. Recall that

ρ[vp](ξx, t) := V [p](ξx(t)). (2)

The following properties hold:
1) V [a ∨ b](x) = V [va ∨ vb](x)
2) V [aU b](x) = V [aU vb](x)

Proof. We give a direct algebraic derivation of each property. Recall that we write ρ(ξαx) := ρ(ξαx , 0) for brevity. We begin
with the first property,

V ∗[a ∨ b](x) = max
α

max{ρ[a](ξαx), ρ[b](ξαx)}

= max
{
max
α

ρ[a](ξαx), max
α

ρ[b](ξαx)
}

= max
{
V ∗[a](x), V ∗[b](x)

}
= max

α
max

{
V ∗[a](ξαx (0)), V

∗[b](ξαx (0))
}

= V ∗[v∗a ∨ v∗b](x).

Next, we prove the second property using Lem. 3.

V ∗[aU b](x)

= max
α

max
t

min{ρ[b](ξαx , t), min
κ∈[0,t]

ρ[a](ξαx , κ)}

= max
t

max
αt−

min{max
αt+

ρ[b](ξ
αt+

ξ
α
t−

x (t)
, 0), min

κ∈[0,t]
ρ[a](ξ

αt−
x , κ)}

= max
t

max
αt−

min{V ∗[b](ξ
αt−
x (t)), min

κ∈[0,t]
ρ[a](ξ

αt−
x , κ)}

= max
t

max
α

min{V ∗[b](ξαx (t)), min
κ∈[0,t]

ρ[a](ξαx , κ)}

= V ∗[aU v∗b](x)

15

Intuitively, these properties illustrate when the algebra of Bellman Value functions is equivalent to that of logic vis a vis the log-
ical operators that “align” with the optimum over actions. Namely, these are the ∨ and right-side U which are quantitatively repre-
sented by maxima, and hence, commute with the maxima over action sequences (in the appropriate settings, e.g. finite state spaces).

With these equivalences, relevant classes of predicates are immediately decomposable, given by the following corollaries.

Corollary 2. Let a predicate pN be defined by the chain of N-Untils over predicates ai, s.t.

pN = (aN UpN−1), p1 = a1.

Then then following property holds,
V ∗[p](x) = V ∗[aN ∧ v∗pN−1

](x).

This result, which is proved by simple iterative application of the first property of Lem. 1, shows that the Bellman value
for a chain of Untils is equivalent to a chain of RA Bellman Values. Notably, another special case of this property is the
eventually-always predicate FGr, which corresponds to the reach-stay Value.

Corollary 3. For the eventually-always predicate FGr, and corresponding reach-stabilize Value,

V ∗[FGr](x) = V ∗[Fv∗Gr](x),

where VGr is the A-Value for the region defined by ¬r.

Ultimately, the equivalences given in Lem. 1 are vital tools to the following proofs. After a reorganization of the logic
into an “agreeable” form, the application of these results yields the decomposed form, when combined with a few auxiliary
algebraic results for manipulation. These are given here, the first of which concerns the next operator X.

Lemma 9. For any predicate p,
V ∗[Xp](x) = V ∗[Xv∗p](x).

Proof. By definition,

V ∗[Xp](x) = max
α

ρ[p](ξαx , 1)

= max
a1∈A

max
α′

ρ[p](ξα
′

f(x,a1)
, 0)

= max
a∈A

V ∗[p](f(x, a))

= max
α

V ∗[p](ξαx (1))

= max
α

ρ[v∗p](ξ
α
x , 1)

Finally, we have a result for a special case of conjunction ∧ operator, corresponding to predicates which are unaffected
by control actions.

Lemma 10. Let a predicate c satisfy

ρ[c](ξαx , t) = ρ[c](ξβx , t), ∀α, β ∈ AN.

Then then following property holds,
V ∗[c ∧ p](x) = V ∗[c ∧ v∗p].

16

Proof.

V ∗[c ∧ p](x) = max
α

min{ρ[c](ξαx), ρ[p](ξαx)}

= min
{
ρ[c](ξβx), max

α
ρ[p](ξαx)

}
, β ∈ AN

= min
{
ρ[c](ξβx), V

∗[p](x)
}

= max
α

min
{
ρ[c](ξαx), V

∗[p](ξαx (0))
}

= V ∗[c ∧ v∗p](x).

This result captures that when a predicate is unaffected by the control actions – and so we migth say “uncontrollable” –
then trivially, the maxima over control actions may pass over the minimum defined by the ∧ operator. With these rules, we
are now able to simplify the decomposition of the Bellman Value for complex logic.

E. N -RA RESULTS

In this section, we offer proof for the first main result in the work decomposing the N -RA Value, corresponding to Thm. 1
from the main text, restated here for clarity.

Theorem 1. For the predicate p :=
∧

i∈I(qi U ri), the corresponding Bellman Value satisfies

V ∗[∧
i

(qi U ri)
]
(x) = V ∗[q̃ U r̃

]
(x)

where,

r̃ :=
∨
i

(
ri ∧ v∗p−i

)
, q̃ :=

∧
i

qi,

and p−i :=
∧

j∈I\{i} qj U rj .

Proof. The strategy for the proof is to first rearrange the logic into a certain form for which application of the algebraic results
in Sec. D is straightforward. Ultimately, this process yields the decomposition of the Bellman Value we desire.

Beginning with the logic, Lem. 5 reorganizes the N -Until conjunction, giving

p :=

N∧
i=1

(qi U ri) ≡
(N∧
i=1

qi
)
U
(N∨
i=1

(
ri ∧ p−i

))
=: q̃ U s.

Hence,
V ∗[p](x) = V ∗

[
q̃ U s

]
(x).

Now, by applying the second property of Lem. 1, we have

V ∗[p](x) = V ∗
[
q̃ U v∗s

]
(x).

Given wi := ri ∧ p−i, we may apply the first property of Lem. 1,

V ∗[s](x) = V ∗
[N∨
i=1

v∗wi

]
(x) =⇒ v∗s =

N∨
i=1

v∗wi
.

Lastly, since ri is immediate and thus uncontrollable, we may apply Lem. 10 to yield

V ∗[wi](x) = V ∗[ri ∧ v∗p−i](x) =⇒ v∗wi
= ri ∧ v∗p−i .

In summary, we have

V ∗[p] = V ∗
[
q̃ U v∗s

]
= V ∗

[
q̃ U
(N∨
i=1

v∗wi

)]
= V ∗

[
q̃ U r̃

]
,

where r̃ :=
∨N

i=1

(
ri ∧ v∗p−i

)
, as desired.

The logic in this result, when combined with the RAA theorem in is equivalently applicable to the extended case involving
Gq, given by the following corollary.

17

Corollary 4. For the predicate
p :=

∧
i∈I

(qi U ri) ∧ Gq,

the corresponding Bellman Value satisfies

V ∗[∧
i

(qi U ri) ∧ Gq
]
(x) = V ∗[q̃ U r̃

]
(x)

where,

r̃ :=
∨
i

(
ri ∧ v∗p−i

)
, q̃ :=

∧
i

qi ∧ q,

and p−i :=
∧

j∈I\{j} (qj U rj) ∧ Gq, and

V [(qj U rj) ∧ Gq](x) = V ∗[qj U
(
rj ∧ v∗Gq

)
](x).

Proof. The proof follows identical to the previous theorem with the altered definition of p and p−i.

F. N -RAℓ RESULTS

In this section, we give several properties surrounding the GF operation, including the RAℓ Bellman equation that may
be used in this context and the extension to G of multi-eventually and Until predicates.

Note, by definition we have the following property.

ρ[GFr](ξx, t) = inf
t′≥t

sup
t′′≥t′

ρ[r](ξx, t
′′) = lim sup

s→∞
ρ[r](ξx, s).

This is, ofcourse, a special case of the G(qU r) Bellman equation, which itself satisfies

ρ[G(qU r)](ξx, t)

= inf
t′≥t

sup
t′′≥t′

min{ρ[r](ξx, t′′), min
κ≤t′′

ρ[q](ξx, κ)}

= lim sup
s→∞

min{ρ[r](ξx, s),min
κ≤s

ρ[q](ξx, κ)}

= min{lim sup
s→∞

ρ[r](ξx, s),min
κ≥t

ρ[q](ξx, κ)}

= ρ[GFr ∧ Gq](ξx, t).

In either case, the infinite-horizon nature of the G composition immediately xyields several qualities regarding the
temporal-independence of the G compositions.

Lemma 11. The following properties hold:
• ρ[G(qU r)](ξx, t) = ρ[G(qU r)](ξx, s), ∀s ≥ t.
• G(qU r) = XnG(qU r), ∀n ∈ N
• V ∗[G(qU r)](x) = V ∗[G(qU r)](ξαx (s)), ∀s ≥ 0.

By logical rearrangement and application of the algebraic results, we may immediately have Thm. 2 restated here for clarity.

Theorem 2. For the predicate p := G (q U r) the corresponding Bellman Value satisfies

V ∗[G (q U r)](x) = V ∗[qU (r ∧ Xv∗p)](x).

Proof. As with the proof of Thm. 1, we begin by rearranging the logic using Lem. 6,

G(qU r) = qU (r ∧ XG(qU r)) =: qU s.

Hence, by applying the second property of Lem. 1, Lem. 10 and Lem. 9, we have

V ∗[G(qU r)] = V ∗
[
q̃ U v∗s

]
= V ∗

[
q̃ U (r ∧ Xv∗G(q U r))

]
.

Notably, we may generalize this result to handle a composition of G with multiple eventually and Until predicates, by
considering a loop of Bellman Values of the previous form. This corresponds to Thm. 3 from the main text, restated as follows.

18

Theorem 3. Given the set of coupled Bellman Values of length J = |J |,

V ∗
j (x) := V ∗ [q̃j U (̃rj ∧ Xv∗j+1)

]
(x)

where J + 1 := 1, q̃j := qj ∧ (qj+1 ∨ rj+1), and r̃j := rj ∧ (qj+1 ∨ rj+1), then ∀j, defined by

V ∗

G
∧

j∈J
(qj U rj)

 (x) = V ∗
j (x).

Proof. Without loss of generality, we consider the case N = 2 for clarity, with the general case following similarly. Recall,
by Lem. 7, for p = G

(
(q1 U r1) ∧ (q2 U r2)

)
we have

p ≡ q̃1 U
(
r̃1 ∧

(
q̃2 U (̃r2 ∧ p)

))
≡ q̃2 U

(
r̃2 ∧

(
q̃1 U (̃r1 ∧ p)

))
.

For j ∈ [1, 2], J + 1 := 1, let
pj := q̃j U

(
r̃j ∧ pi

)
Then by definition,

pj = q̃j U
(
r̃j ∧

(
q̃i U (̃ri ∧ p)

))
≡ p.

Thus, it follows that
V ∗[G(qU r)] = V ∗[pj], ∀j ∈ J .

Now, by applying the second property of Lem. 1, Lem. 10 and Lem. 9, we arrive at the desired result.

Although, these results appear like the previous decompositions, it is important to note that they are fundamentally different
due to the implicit definition of the Value. Moreover, they do not guarantee the uniqueness or existence of the solution. To
certify these properties, we may consider the G composition as the limit of the finite iterations. This is given in Sec. G.

With the Value iteration results, we may know conditions under which this Value exists (e.g. finite state spaces), and proceed
to solve this Value. While the Value iteration is a nice theoretical procedure, it may not be practical for large state spaces and
certain specifications. To address these challenges, we propose the RAℓ Bellman Equation in the main text, given here for clarity,

Lemma 2. For the set of J Values defined in Thm. 3, let the RAℓ-BE be defined as

Bγ
RAℓ

[Vj] := (1− γ)min{r̃j , q̃j}+

γmin
{
max

{
min

{
r̃j , V

+

j+1

}
, V +

j

}
, q̃j

}
.

This is contractive such that V γ
j = Bγ

RAℓ
[V γ

j] has a unique fixed point, satisfying limγ→1 V
γ
j = V ∗[G(

∧
j∈J (qj U rj))].

Proof. We first prove the existence of the fixed point by showing that the operator is contractive and then show that in the
limit of discounting, the fixed point achieves the desired solution. Note, in this context, V ∈ R|J | is a vector of Values.

1. Contraction:
Consider two vectors V,W ∈ R|J |, and let ∥ · ∥∞ be the infinity norm. Here, we write r = r̃j and q = q̃j for brevity. Note
for each component j we have,

∥Bγ
RAℓ

[Vj]− Bγ
RAℓ

[Wj]∥
= γ∥min{max{min{rj , V +

j+1}, V
+
j }, q}−

min{max{min{r,W+
j+1},W

+
j }, q}∥

≤ γ
∥∥max{min{r, V +

j+1}, V
+
j } −max{min{r,W+

j+1},W
+
j }
∥∥

≤ γmax{
∥∥min{r, V +

j+1} −min{r,W+
j+1}

∥∥ ,∥∥V +
j −W+

j

∥∥}
≤ γmax{

∥∥V +
j+1 −W+

j+1

∥∥ ,∥∥V +
j −W+

j

∥∥}
≤ γLmax{∥Vj+1 −Wj+1∥ , ∥Vj −Wj∥},

19

where the last line follows from the lipschitz continuity of V (x), W (x) and f(x, a), given the definition
V +
j (x) := maxa∈A Vj(f(x, a)). Taking the maximum over all components j, we have then

∥Bγ
RAℓ

[V]− Bγ
RAℓ

[W]∥∞ ≤ γLmax
j

{∥Vj −Wj∥}

= γL ∥V −W∥∞ ,

demonstrating that the operator Bγ
RAℓ

is a contraction mapping.

2. Convergence in the limit of γ → 1:
Let V γ be the vector-valued fixed point defined by V γ = Bγ

RAℓ
[V γ], s.t. for each component j we have

V γ
j (x) = (1− γ)min{r̃j , q̃j}+

γmin{max{min{r̃j , V γ+
j+1}, V

γ+
j }, q̃j}.

Note, each component is just a special case of the proof of Proposition 3 in [56], hence we may know,

lim
γ→1

V γ
j (x)

= max
α

max
t

min{min{r̃j(x), V ∗,+
j+1 (x)}, max

κ∈[0,t]
q̃j(x)}

= V ∗
j [q̃j U (̃rj ∧ Xv∗j+1)](x)

= V ∗

G
∧

j∈J
(qj U rj)

 (x),

where the last line follows from Thm. 3.

G. G(. . .) FIXED POINT ITERATION

In this section, we present an alternate perspective on the Bellman Value corresponding to the G(. . .) compositions based
on finite iterations of recursion. Indeed, one may use this approach to solve the Value, however, for large state spaces or
complicated specifications, this may be expensive. We principally employ this approach to guarantee the uniqueness and
existence of the corresponding Bellman Values (which in general may be ill defined) in order to accompany the RAℓ-BE.

A. Single-Predicate Recurrence

For clarity, we begin by considering the case involving the recurrence of a single predicate (target to reach), given by
p := GFr and Value

V [GFr](x) = max
α

max
t≥0

min
{
r(ξαx (t)), V [GFr](ξαx (t+ 1))

}
per Thm 2.

We now consider the following other value function:

Vk+1(x) := V ∗[F(r ∧ Xvk)](x)

= max
α

max
t≥0

min
(
r(ξαx (t)), Vk(ξ

α
x (t+ 1))

)
,

where V0(x) := ∞ for all x i.e. v0 := ⊤.

Lemma 12. The sequence V k converges to V [GFr] pointwise, i.e., for all x,

lim
k→∞

Vk(x) = V [GFr](x).

Proof. First, for an arbitrary threshold λ, construct the superlevel sets R, W ∗ and Wk as

R := {x : r(x) ≥ λ},
W ∗ := {x : V ∗[GFr](x) ≥ λ},
Wk := {x : Vk(x) ≥ λ}.

Note that Wk is exactly the set of states from which it is possible to reach R at least k times.

20

Since V0(x) = ∞ for all x, we have W0 = X . Let T denote the operator that maps Vk to Vk+1, i.e., Vk+1 = T Vk. By
Lem. 13, T is monotone, i.e., U(x) ≤ V (x) =⇒ T U(x) ≤ T V (x) for all x. Moreover, since V1 ≤ V0, we have Vk+1 ≤ Vk

for all k by induction, and thus Wk+1 ⊆ Wk for all k.
Since Wk is a decreasing sequence of sets, the limit W∞ =

⋂∞
k=0 Wk exists, and also that limk→∞ Vk(x) = V ∞(x) exists

for all x.
a) 1. (W ∗ ⊆ W∞): Let x ∈ W ∗. Then, by definition of V ∗[GFr], there exists an action sequence α such that the system

visits R infinitely often. In particular, for any k ∈ N, the system can reach R at least k times under α. Hence, x ∈ Wk for
all k, and thus x ∈ W∞.

b) 2. (W ∗ ⊇ W∞): We apply either Lem. 14, 15, or 16 depending on the assumptions on the state and action spaces
to conclude that W∞ ⊆ W ∗.

Since we have shown both inclusions, we conclude that W ∗ = W∞. Since this holds for any threshold λ, we have
limk→∞ Vk(x) = V ∗[GFr](x) for all x, i.e., Vk converges pointwise to V ∗[GFr].

Lemma 13. The operator T defined as

T V (x) = max
α

max
t≥0

min
(
r(ξαx (t)), V (ξαx (t+ 1))

)
is monotone, i.e., for any two functions U and V such that U(x) ≤ V (x) for all x, we have T U(x) ≤ T V (x) for all x.

Proof. Let U and V be two functions such that U(x) ≤ V (x) for all x. Then, for any action sequence α and any time t,

min
(
r(ξαx (t)), U(ξαx (t+ 1))

)
≤

min
(
r(ξαx (t)), V (ξαx (t+ 1))

)
.

Taking max over t and α on both sides yields
T U(x) ≤ T V (x).

Lemma 14. Suppose the set of states X is finite. Then, W∞ ⊆ W ∗.

Proof. First, since X is finite, Wk ⊆ X is finite for all k. Moreover, since Wk+1 ⊆ Wk for all k, the sequence Wk must
stabilize at some finite K, i.e., WK = W∞ for some K. Hence, W∞ is a fixed point of the operator that maps Wk to Wk+1.

Now, let x ∈ W∞. Since W∞ is a fixed point, there exists some action sequence α and time t such that ξαx (t) ∈ R, and
ξαx (t) ∈ W∞. We can repeat this argument to construct an infinite action sequence α under which the system visits R infinitely
often. Thus, x ∈ W ∗, and W∞ ⊆ W ∗.

Lemma 15. Suppose the set of actions A is finite. Then, W∞ ⊆ W ∗.

Proof. Let x ∈ W∞. Then, for any k ∈ N, there exists an action sequence αk such that the system can reach R at least k
times under αk. We now construct a “success tree” where, from every node, we create a branch for each action in A, and
we remove all nodes that are not in W∞. Since A is finite, this tree has a finite branching factor. Moreover, since x ∈ W∞,
for any depth k, there exists a path from the root to a node at depth k. By König’s lemma [77], there exists an infinite path
from the root. Since all nodes in the tree are in W∞, this infinite path corresponds to an action sequence under which the
system visits R infinitely often. Thus, x ∈ W ∗, and W∞ ⊆ W ∗.

Lemma 16. Suppose the set of actions A is a compact space, and the dynamics f is continuous in a. Then, W∞ ⊆ W ∗.

Proof. Let x ∈ W∞. Then, for any k ∈ N, there exists an action sequence αk such that the system can reach R at least k
times under αk. We now construct a sequence of non-empty compact sets Cn as follows. Let C0 = A. For each n ≥ 1, let

Cn = {a ∈ Cn−1 : ∃a1:∞ s.t.
the system reaches R at least n times under (a, a1:∞)}.

Note that Cn is non-empty since x ∈ W∞. Moreover, Cn is closed since the dynamics f is continuous in a, and thus Cn

is compact as a closed subset of the compact set Cn−1. Since Cn+1 ⊆ Cn for all n, by Cantor’s intersection theorem [78],
the intersection

⋂∞
n=0 Cn is non-empty. Let a0 be an element in this intersection. By construction of Cn, there exists an action

sequence a1:∞ such that the system reaches R at least n times under (a0, a1:∞) for all n. Hence, the system visits R infinitely
often under the action sequence (a0, a1:∞), and thus x ∈ W ∗. Therefore, W∞ ⊆ W ∗.

21

B. Multi-Predicate Recurrence

Here we give a generalization of the previous finite recurrence approach to compositions of G with multi-Until predicates.
We give the proofs for the case with N = 2 but the generalization to N > 2 follows similarly.

Let the globally-(until and until) value function be defined as

V ∗[G(∧jqj U rj)](x0)

:= max
α

ρ
[
G(q1 U r1 ∧ q2 U r2)

]
(x0, 0)

= max
α

min
t≥0

min
{
max
s≥t

min
{
r1
(
ξαx0

(s)
)
,

min
0≤ℓ<s

q1
(
ξαx0

(ℓ)
)}

,

max
u≥t

min
{
r2
(
ξαx0

(u)
)
,

min
0≤ℓ<u

q2
(
ξαx0

(ℓ)
)}}

.

Let w1 := q1 ∨ r1 and w2 := q2 ∨ r2, and define the “until” objective function Ui as

Ui

(
ξαt:∞
x

)
:= sup

s≥t
min

{
ri
(
ξαt:∞
x (s)

)
,

min
t≤ℓ<s

qi
(
ξαx (ℓ)

)}
.

We now consider the following coupled system of value functions:

V1,k+1(x0)

:= max
α

ρ
[
(q1 ∧ w2)U (r1 ∧ w2 ∧ XV2,k)

]
(x0)

= max
α

max
t≥0

min
{
min

(
r1
(
ξαx0

(t)
)
,

w2

(
ξαx0

(t)
)
, V2,k

(
ξαx0

(t+1)
))
,

min
0≤ℓ<t

min
(
q1
(
ξαx0

(ℓ)
)
,

w2

(
ξαx0

(ℓ)
))}

,

V2,k+1(x0)

:= max
α

ρ
[
(q2 ∧ w1)U (r2 ∧ w1 ∧ XV1,k)

]
(x0)

= max
α

max
t≥0

min
{
min

(
r2
(
ξαx0

(t)
)
,

w1

(
ξαx0

(t)
)
, V1,k

(
ξαx0

(t+1)
))
,

min
0≤ℓ<t

min
(
q2
(
ξαx0

(ℓ)
)
,

w1

(
ξαx0

(ℓ)
))}

,

where V1,0(x) := ∞ and V2,0(x) := ∞ for all x.

Lemma 17. For any k > 0, let ξαx0
be the trajectory generated by the policy achieving the supremum in Vi,k(x0). Then,

Vi,k(x0) ≤ Ui

(
ξα0:∞
x0

)
(5)

22

Proof.

Vi,k(x0)

= max
t≥0

min
{
min

(
ri
(
ξαx0

(t)
)
,

w¬i

(
ξαx0

(t)
)
, V¬i,k−1

(
ξαx0

(t+1)
))
,

min
0≤ℓ<t

min
(
qi
(
ξαx0

(ℓ)
)
,

w¬i

(
ξαx0

(ℓ)
))}

≤ max
t≥0

min
{
ri
(
ξαx0

(t)
)
,

min
0≤ℓ<t

qi
(
ξαx0

(ℓ)
)}

= Ui

(
ξα0:∞
x0

)
.

Lemma 18. Both sequences V1,k and V2,k converge to V ∗[G(∧jqj U rj)] pointwise, i.e., for all x,

lim
k→∞

V1,k(x) = lim
k→∞

V2,k(x)

= V ∗[G(∧jqj U rj)](x).

Before we prove Lem. 18, we set up a few useful definitions and lemmas.
Define the operator T mapping (J1, J2) to (J ′

1, J
′
2) as

J ′
1(x0)

:= sup
α

sup
t≥0

min
{
min

(
r1
(
ξαx0

(t)
)
,

w2

(
ξαx0

(t)
)
, J2
(
ξαx0

(t+1)
))
,

min
0≤ℓ<t

min
(
q1
(
ξαx0

(ℓ)
)
,

w2

(
ξαx0

(ℓ)
))}

,

J ′
2(x0)

:= sup
α

sup
t≥0

min
{
min

(
r2
(
ξαx0

(t)
)
,

w1

(
ξαx0

(t)
)
, J1
(
ξαx0

(t+1)
))
,

min
0≤ℓ<t

min
(
q2
(
ξαx0

(ℓ)
)
,

w1

(
ξαx0

(ℓ)
))}

.

Lemma 19. The operator T is monotone.

Proof. It follows immediately from the monotonicity of the sup and min operators.

Lemma 20. Both sequences converge pointwise, i.e., V1,∞ and V2,∞ exist.

Proof. Since V1,0(x) = ∞ and V1,1(x) is finite, V1,1(x) ≤ V1,0(x) for all x. By monotonicity of T , the sequence V1,k is non-
increasing. Moreover, V1,0(x) is bounded below by min(infx r1(x), infx r2(x)). Thus, by the monotone convergence theorem,
V1,∞(x) = limk→∞ V1,k(x) exists for all x. The same reasoning applies to V2,k to show that V2,∞(x) = limk→∞ V2,k(x)
exists for all x.

We now show that V1,∞ and V2,∞ both equal V ∗[G(∧jqj U rj)] via double inequality.

23

Lemma 21.
V ∗[G(∧jqj U rj)](x) ≤ Vi,∞(x) for i = 1, 2. (6)

Proof. Let V ∗[G(∧jqj U rj)](x0) = λ. By definition of the sup in V ∗[G(∧jqj U rj)], for any ϵ > 0, there exists a policy α
such that for all t ≥ 0,

U1

(
ξαt:∞
x0

)
≥ λ− ϵ,

U2

(
ξαt:∞
x0

)
≥ λ− ϵ. (7)

Using the recursive relation of Ui,

Ui

(
ξαt:∞
x0

)
= max

{
ri
(
ξαx0

(t)
)
,

min
(
qi
(
ξαx0

(t)
)
, Ui

(
ξαt+1:∞
x0

))}
≤ max

{
ri
(
ξαx0

(t)
)
, qi
(
ξαx0

(t)
)}

= wi

(
ξαx0

(t)
)
.

Hence, (7) implies that under α, wi

(
ξαx0

(t)
)
≥ λ− ϵ for all t ≥ 0.

We now show via induction on k that V1,k

(
ξαx0

(t)
)
≥ λ− ϵ and V2,k

(
ξαx0

(t)
)
≥ λ− ϵ for all states visited by α.

a) Base Case (k = 0):: By definition, V1,0(x) = V2,0(x) = ∞ ≥ λ− ϵ.
b) Inductive Step:: Assume the statement holds for some k, i.e., for all visited states,

V2,k

(
ξαx0

(t)
)
≥ λ− ϵ. (8)

Consider V1,k+1(x0). Under α, since U1

(
ξα0:∞
x0

)
≥ λ − ϵ, there exists some time t where r1

(
ξαx0

(t)
)
≥ λ − ϵ and for all

0 ≤ ℓ < t, q1
(
ξαx0

(ℓ)
)
≥ λ− ϵ. By the inductive hypothesis, V2,k

(
ξαx0

(t+1)
)
≥ λ− ϵ. Thus,

V1,k+1(x0)

≥ min
{
r1
(
ξαx0

(t)
)
, w2

(
ξαx0

(t)
)
,

V2,k

(
ξαx0

(t+1)
)
,

min
0≤ℓ<t

min
{
q1
(
ξαx0

(ℓ)
)
,

w2

(
ξαx0

(ℓ)
)}}

≥ λ− ϵ.

By symmetry, the same reasoning applies to V2,k+1(x0). Since ϵ > 0 was arbitrary, we have shown (6).

Lemma 22.
Vi,∞(x) ≤ V ∗[G(∧jqj U rj)](x) for i = 1, 2. (9)

Proof. We construct a policy α that achieves a value arbitrarily close to V1,∞(x0).
Let λ = V1,∞(x0), and fix ϵ > 0. Define “slack” variables δj = ϵ/2j+1 for j = 0, 1, . . . , so that

∑∞
j=0 δj = ϵ and∑N

j=0 δj < ϵ for all finite N .
We iteratively construct α by stitching together finite segments. Let m = j mod 2 + 1 denote the “mode” at switch j. We

show that after j switches, the state xsw satisfies

Vm,∞(xsw) ≥ λ−
∑j−1

i=0 δi,

and for all times t between switches,

U1

(
ξαt:∞
x0

)
≥ λ− ϵ,

U2

(
ξαt:∞
x0

)
≥ λ− ϵ.

c) Base Case.: At j = 0, we begin at x0 with V1,∞(x0) = λ.

24

d) Inductive Step.: Suppose after j switches we are at state ξαx0
(t) with m = 1 (the case m = 2 follows by symmetry).

Suppose V1,∞
(
ξαx0

(t)
)
≥ λ−

∑2j−1
i=0 δi. By definition of V1,∞, there exists a finite time t1 and policy segment αt:t1−1 such that

• r1
(
ξαx0

(t1)
)
≥ λ−

∑2j
i=1 δi

• w2

(
ξαx0

(t1)
)
≥ λ−

∑2j
i=1 δi

• V2,∞
(
ξαx0

(t1+1)
)
≥ λ−

∑2j
i=1 δi

• q1
(
ξαx0

(s)
)
≥ λ−

∑2j
i=1 δi for all t ≤ s < t1

• w2

(
ξαx0

(s)
)
≥ λ−

∑2j
i=1 δi for all t ≤ s < t1

Hence, for all τ with t ≤ τ < t1,

U1

(
ξατ:∞
x0

)
≥ min

(
r1
(
ξαx0

(t1)
)
,

min
τ≤s<t1

q1
(
ξαx0

(s)
))

≥ λ− ϵ.

For U2, let τ ∈ [t, t1 − 1]. We consider two cases.
1) There exists t′ with τ ≤ t′ < t1 and r2

(
ξαx0

(t′)
)
≥ λ − ϵ. Let t′ be the smallest such time. Since w2

(
ξαx0

(s)
)
≥ λ − ϵ

and t′ is minimal, we have q2
(
ξαx0

(s)
)
≥ λ− ϵ for all τ ≤ s < t′. Hence,

U2

(
ξατ:∞
x0

)
≥ min

(
r2
(
ξαx0

(t′)
)
,

min
τ≤s<t′

q2
(
ξαx0

(s)
))

≥ λ− ϵ.

2) No such t′ exists. Since U2

(
ξ
αt+1:∞
x0

)
≥ V2,∞

(
ξαx0

(t+1)
)
≥ λ − ϵ, there exists t′′ ≥ t1 with r2

(
ξαx0

(t′′)
)
≥ λ − ϵ and

q2
(
ξαx0

(s)
)
≥ λ− ϵ for all t+ 1 ≤ s < t′′. Since no t′ exists, q2

(
ξαx0

(s)
)
≥ λ− ϵ for all τ ≤ s ≤ t1. Thus,

U2

(
ξατ:∞
x0

)
= sup

s≥τ
min

{
r2
(
ξαx0

(s)
)
,

min
τ≤ℓ<s

q2
(
ξαx0

(ℓ)
)}

≥ min
{
r2
(
ξαx0

(t′′)
)
,

min
τ≤ℓ<t′′

q2
(
ξαx0

(ℓ)
)}

≥ λ− ϵ.

Hence, for all τ with t ≤ τ < t1, both U1 and U2 are at least λ − ϵ. We extend α with the segment αt:t1−1 and transition
to ξαx0

(t1+1), where
V2,∞

(
ξαx0

(t1+1)
)
≥ λ−

∑2j
i=1 δi.

By symmetry, the same holds when m = 2. Thus, the inductive step holds.
By induction, at all times t,

U1

(
ξαt:∞
x0

)
≥ λ− ϵ,

U2

(
ξαt:∞
x0

)
≥ λ− ϵ.

Hence,

V ∗[G(∧jqj U rj)](x0)

= sup
α

min
{
U1

(
ξα0:∞
x0

)
,

U2

(
ξα0:∞
x0

)}
≥ λ− ϵ = V1,∞(x0)− ϵ.

Since ϵ > 0 was arbitrary, V ∗[G(∧jqj U rj)](x0) ≥ V1,∞(x0). By symmetry, V ∗[G(∧jqj U rj)](x0) ≥ V2,∞(x0). This shows
(9).

25

We are now ready to prove Lem. 18.

Proof. The proof follows directly from (6) and (9).

H. GENERAL RESULT

Here, we give a proof of the general result given in the main text, restated here.

Theorem 4. For the predicate

p :=

(∧
i∈I

(qi U ri)

)
∧ G

∧
j∈J

(qj U rj)

 ∧ Gq

the corresponding optimal Value satisfies V ∗[p](x) = V ∗[q̃ U r̃
]
(x) where

r̃ :=
∨
i

(
ri ∧ v∗p−i

)
, q̃ :=

∧
k∈I×J

q̃k ∧ q,

p−i :=
∧

k∈I\{i}

(qk U rk) ∧ G

∧
j∈J

(qj U rj)

 ∧ Gq.

Proof. The proof simply follows from the same reasoning as in the previous sections, utilizing the established relationships
between the various Value functions and their decompositions. Namely, this result follows from a combination of logical
rearrangement and then a usage of the algebraic properties of the Bellman equations.

First, we may have by Lem. 8 that p may be rewritten in one of two ways, depending on the remaining index set of Until
predicates J . Hence, the proof follows from either case.

a) Non-empty J : In this case we have by Lem. 8, p = q̃ U r̃, where r̃ is given by,

r̃I,J :=
∨
j∈J

rj ∧ ΦI,J\{j}.

Notably, this case is algebraically equivalent to the previous proofs (e.g. Thm. 1), and hence, by Lemmas 1 and 10, we have
the given result.

b) J = ∅: In this case we have by Lem. 8,

p ≡ G
(∧
i∈I

(
qi ∧ q

)
U
(
ri ∧ q

))
On the other hand, this is a special case of the N -RAℓ problem, and thus by Thm. 3, we may decompose this into N coupled
Until-decompositions.

I. POLICY RESULTS

In this section, we extend the previous results involving the optimal action sequence α to a state-feedback policy
π : X → A. For general TL predicates, the synthesis of a policy that matches open-loop action sequence performance requires
state-augmentation [5, 68]. The nature of temporal logic is to score satisfaction over the entire trajectory Hence, to play
optimally, the running performance is required. In [5], the authors show that for a reduced set of dual-predicates, the optimal
policy may be derived as a function of the augmented-state and each decomposed Value. Here, we generalize these results
to the decomposed Value graph that arises in the decomposition of the general predicates considered in this work.

To do so, we introduce the Q function, which defines the value of taking a particular action a at state x, then following
the optimal policy thereafter. However, since the optimal policy for temporal logic is history-dependent, we will extend the
Q to consider not just the current action, but also the next n actions.

As shown in Thm. 4, the TL can be transformed into a single Until but with a “reach” predicate that involves the value
function of a subproblem. Hence, for conciseness, we will first define the Q function and its extensions for the Until case,
then show how it can be applied to the general case.

Definition 5. Consider the formula f := qU r with atomic predicates q and r. Define the Q function Q[f] as

Q[f](x0, a0) = min
{
q(x0),max

(
r(x0), V [f](x1)

)}
, where x1 = f(x0, a0). (10)

26

Standard properties of the Q function hold, such as

V [f](x) = max
a

Q[f](x, a). (11)

The Q function here has been introduced before in the literature [56]. However, we now introduce an extension of the
Q function to consider the next n actions.

Definition 6. We recursively define the n-step Q function as

Q(n)[f](x0, a0, . . . , an−1) = min
{
q(x0),max

(
r(x0), Q

(n−1)[f](x1, a1, . . . , an−1)
)}

, where x1 = f(x0, a0). (12)

where Q(0)[f](x) := V [f](x).

Note that the n-step Q function is a generalization of the standard Q function, and includes the standard Q function as
a special case when n = 1 and the Value function as a special case when n = 0. We now prove a generalization of (11) to
the n-step Q function.

Lemma 23. For all n ≥ 0,

Q(n)[f](x0, a0, . . . , an−1) = max
an

Q(n+1)[f](x0, a0, . . . , an−1, an). (13)

Proof. The proof follows from induction on n.
Base Case (n = 0): By definition, Q(0)[f](x0) = V [f](x0), and by (11), we have

V [f](x0) = max
a

Q(1)[f](x0, a). (14)

Inductive Step: Assume the statement holds for some n, i.e.,

Q(n)[f](x0, a0, . . . , an−1) = max
an

Q(n+1)[f](x0, a0, . . . , an−1, an). (15)

Consider Q(n+1)[f](x0, a0, . . . , an). By definition,

Q(n+1)[f](x0, a0, . . . , an)

= min
{
q(x0),max

(
r(x0), Q

(n)[f](x1, a1, . . . , an)
)}

, x1 = f(x0, a0).

By the inductive hypothesis,

Q(n)[f](x1, a1, . . . , an)

= max
an+1

Q(n+1)[f](x1, a1, . . . , an, an+1).

Hence,

Q(n+1)[f](x0, a0, . . . , an)

= max
an+1

min
{
q(x0),max

(
r(x0), Q

(n+1)[f](x1, a1, . . . , an, an+1)
)}

= max
an+1

Q(n+2)[f](x0, a0, . . . , an+1).

This completes the inductive step and thus the proof.

By telescoping the above result, we have the following corollary which relates the n-step Q function to the Value function.

Corollary 5. For all n ≥ 0,

V [f](x0) = max
a0

max
a1

. . .max
an

Q(n)[f](x0, a0, a1, . . . , an). (16)

Proof. The proof follows from telescoping the previous lemma.

27

We can then compute the optimal policy as follows. Suppose, starting at state x0, we have taken optimal actions a∗0, . . . , a
∗
k−1

to arrive at state xk. Then, by (16),

V (x0) = max
a0

. . .max
ak

Q(k+1)[f](x0, a0, . . . , ak−1, ak). (17)

Hence the optimal action a∗k can be obtained as

a∗k = argmax
ak

Q(k+1)[f](x0, a
∗
0, . . . , a

∗
k−1, ak). (18)

Beyond atomic predicates. The above results are stated for the case of a single Until operator with atomic predicates. However,
by the results of the previous sections, we can decompose a general predicate into a graph of coupled Until operators with
atomic predicates and Value functions as reach predicates. Without loss of generality, we now consider the formula f1 defined as

f1 = q1 U
(
r1 ∧ f0

)
. (19)

To define the Q function correctly, we start from the relation (11), but for f1 instead of f, which gives

V [f1](x0) = min
{
q1(x0), max

(
r1(x0) ∧ V [f0](x0),max

a0

V [f1](x1)
)}

(20)

= min
{
q1(x0), max

(
r1(x0) ∧

(
max
a0

Q[f0](x0, a0)
)
,max

a0

V [f1](x1)
)}

(21)

= min
{
q1(x0), max

a0

max
(
r1(x0) ∧Q[f0](x0, a0), max

a0

V [f1](x1)
)}

(22)

= max
a0

min
{
q1(x0), max

(
r1(x0) ∧Q[f0](x0, a0), V [f1](x1)

)}
︸ ︷︷ ︸

:=Q[f1](x0,a0)

. (23)

Note that the first argument of the max is a function of a0 since Q[f0] is a function of a0. This is different from the previous
case with atomic predicates, where the first argument of the max was only dependent on x0.

We can now recursively define the n-step Q function by using (16).

Definition 7. For the formula f1 defined above, we define the n-step Q function as

Q(n)[f1](x0, a0, . . . , an−1) = min
{
q1(x0), max

(
r1(x0)∧Q(n)[f0](x0, a0, . . . , an−1), Q

(n−1)[f1](x1, a1, . . . , an−1)
)}

,

(24)
where x1 = f(x0, a0) and Q(n)[f0] is defined as in the previous section.

We now prove that this definition of the n-step Q function satisfies Lemma 23.

Lemma 24. For all n ≥ 0,

Q(n)[f1](x0, a0, . . . , an−1) = max
an

Q(n+1)[f1](x0, a0, . . . , an−1, an). (25)

Proof. The proof follows from induction on n and is similar to the proof of Lemma 23 for the case of atomic predicates,
but with the additional consideration of the Q(n)[f0] term.

Base Case (n = 0): By definition, Q(0)[f1](x0) = V [f1](x0) and Q(1)[f1](x0, a0) = Q[f1](x0, a0), so this holds by definition
of Q[f1] from (23).

Inductive Step: Assume the statement holds for some n, i.e.,

Q(n)[f1](x0, a0, . . . , an−1) = max
an

Q(n+1)[f1](x0, a0, . . . , an−1, an). (26)

Consider Q(n+1)[f1](x0, a0, . . . , an). By the inductive hypothesis,

Q(n)[f1](x1, a1, . . . , an) = max
an+1

Q(n+1)[f1](x1, a1, . . . , an, an+1). (27)

28

Hence, by definition of Q(n+1)[f1] and using Lemma 23 for Q(n)[f0],

Q(n+1)[f1](x0, a0, . . . , an) (28)

= min
{
q1(x0), max

(
r1(x0) ∧Q(n+1)[f0](x0, a0, . . . , an), Q

(n)[f1](x1, a1, . . . , an)
)}

, (29)

= min
{
q1(x0), max

(
r1(x0) ∧Q(n+1)[f0](x0, a0, . . . , an), max

an+1

Q(n+1)[f1](x1, a1, . . . , an+1)
)}

, (30)

= min
{
q1(x0), max

(
r1(x0) ∧max

an+1

Q(n+2)[f0](x0, a0, . . . , an, an+1), max
an+1

Q(n+1)[f1](x1, a1, . . . , an+1)
)}

, (31)

= min
{
q1(x0), max

an+1

max
(
r1(x0) ∧Q(n+2)[f0](x0, a0, . . . , an, an+1), Q

(n+1)[f1](x1, a1, . . . , an+1)
)}

, (32)

= max
an+1

min
{
q1(x0), max

(
r1(x0) ∧Q(n+2)[f0](x0, a0, . . . , an, an+1), Q

(n+1)[f1](x1, a1, . . . , an+1)
)}

, (33)

= max
an+1

Q(n+2)[f1](x0, a0, . . . , an, an+1). (34)

This completes the inductive step and thus the proof.

Similar to before, we can use Lemma 24 to relate the n-step Q function to the Value function as follows.

Corollary 6. For all n ≥ 0,

V [f1](x0) = max
a0

max
a1

. . .max
an

Q(n)[f1](x0, a0, a1, . . . , an). (35)

Proof. The proof follows from telescoping the previous lemma.

Thus, we can compute the optimal policy for f1 by using the n-step Q function as follows. Suppose, starting at state x0,
we have taken optimal actions a∗0, . . . , a

∗
k−1 to arrive at state xk. Then, by the previous corollary,

V [f1](x0) = max
a0

. . .max
ak

Q(k+1)[f1](x0, a0, . . . , ak). (36)

Hence the optimal action a∗k can be obtained as

a∗k = argmax
ak

Q(k+1)[f1](x0, a
∗
0, . . . , a

∗
k−1, ak). (37)

The optimal action a∗k can be expressed in terms of the original Q function Q[f1] in a recursive manner, as we now show
in the following result.

Lemma 25. For all k ≥ 0, let a∗0, . . . , a
∗
k−1 be the optimal actions taken from state x0 to arrive at state xk. Now

consider the action âk computed as

âk ∈


argmax

ak

Q(k+1)[f0](x0, a
∗
0, . . . , a

∗
k−1, ak), r1(x0) ∧ V [f0](x0) ≥ V [f1](x1)

argmax
ak

Q(k)[f1](x1, a
∗
1, . . . , a

∗
k−1, ak), otherwise

(38)

Then, âk ∈ argmaxak
Q(k+1)[f1](x0, a

∗
0, . . . , a

∗
k−1, ak).

Proof. From the definition of the n-step Q function and using properties of the argmax operator,

argmax
ak

Q(k+1)[f1](x0, a
∗
0, . . . , a

∗
k−1, ak) (39)

= argmax
ak

min
{
q1(x0), max

(
r1(x0) ∧Q(k+1)[f0](x0, a

∗
0, . . . , ak), Q

(k)[f1](x1, a
∗
1, . . . , ak)

)}
(40)

⊇ argmax
ak

max
(
r1(x0) ∧Q(k+1)[f0](x0, a

∗
0, . . . , ak), Q

(k)[f1](x1, a
∗
1, . . . , ak)

)
(41)

⊇


argmax

ak

r1(x0) ∧Q(k+1)[f0](x0, a
∗
0, . . . , ak), max

ak

r1(x0) ∧Q(k+1)[f0](x0, a
∗
0, . . . , ak) ≥ max

ak

Q(k)[f1](x1, a
∗
1, . . . , ak)

argmax
ak

Q(k+1)[f1](x1, a
∗
1, . . . , ak), otherwise

(42)

29

Note that

max
ak

r1(x0) ∧Q(k+1)[f0](x0, a
∗
0, . . . , ak) = r1(x0) ∧max

ak

Q(k+1)[f0](x0, a
∗
0, . . . , ak), (43)

= r1(x0) ∧ V [f0](x0). (44)

and

max
ak

Q(k)[f1](x1, a
∗
1, . . . , ak) = V [f1](x1). (45)

Hence,

argmax
ak

Q(k+1)[f1](x0, a
∗
0, . . . , a

∗
k−1, ak) (46)

⊇


argmax

ak

r1(x0) ∧Q(k+1)[f0](x0, a
∗
0, . . . , ak), r1(x0) ∧ V [f0](x0) ≥ V [f1](x1)

argmax
ak

Q(k)[f1](x1, a
∗
1, . . . , ak), otherwise

(47)

⊇


argmax

ak

Q(k+1)[f0](x0, a
∗
0, . . . , ak), r1(x0) ∧ V [f0](x0) ≥ V [f1](x1)

argmax
ak

Q(k)[f1](x1, a
∗
1, . . . , ak), otherwise

(48)

Thus, for any âk taken from the set on the right-hand side, this implies that âk is also in the set on the left-hand side, which
completes the proof.

Lemma 25 enables us to compute the optimal action at time k using the argmax of a k + 1-step Q function by either
taking the argmax of the k + 1-step Q function for f0, a simpler subproblem, or the n-step Q function for f1 the original
problem with one fewer step depending on the comparison of the two terms. The base case is reached when either we reach
the argmax of the 1-step Q function for either f0 or f1, which can be computed directly without recursion.

Solving the general problem. The above results show how to compute the optimal policy for a single Until formula with
a nested Until formula as the reach predicate. Note, however, that nowhere in the previous section did we rely on the fact
that f0 was an Until formula with atomic predicates, and the results hold for any formula f0 for which we can define a n-step
Q function. We have shown how to define the n-step Q function for a single Until formula with atomic predicates. The same
can be done for Globally formulas, as well as for disjunctions of Untils.

Hence, by the results of the previous sections, we can apply Lemma 25 recursively to compute the optimal policy for any
formula that can be decomposed into a graph of coupled Until formulas with atomic predicates and Value functions as reach
predicates, which includes all formulas in our logic by Thm. 4.

Minimizing the required information. Note that, using Lemma 25 to compute the optimal action at time k requires
comparing the sign of two terms at all previous time steps, which may require keeping track of the entire state trajectory history
up to time k. However, we can minimize the amount of information that needs to be tracked by noting that the same comparison
is made at all previous time steps. For example, for any value of k, the first comparison is always between r1(x0) ∧ V [f0](x0)
and V [f1](x1). The result of this comparison does not change since the states x0 and x1 will have been in the past for k ≥ 1.
Similarly, if the result of this comparison then next asks for argmaxak

Q(k)[f1](x1, a
∗
1, . . . , ak), then the next comparison

will always be between r1(x1) ∧ V [f0](x1) and V [f1](x2), and the result of this comparison will also not change for all k ≥ 2.
This thus defines a tree of comparisons that can be pre-computed at the beginning of the episode, and the optimal action

at time k can be computed by traversing this tree of comparisons to find the correct Q function to use for computing the
optimal action, without needing to keep track of the entire state trajectory history.

30

J. VALTR DETAILS

In this section, we describe our tool valtr, that (1.) converts temporal logic predicates into a suitable form for decomposition,
and (2.) applies the main results recursively to generate the decomposed Value graph.

To decompose the Value for a user-input predicate, the predicate must first be organized into the form given in Thm. 4. This
is accomplished by lexing the temporal logic string into relevant tokens, such as atomic propositions and temporal operators,
which may then be parsed to generate an abstract syntax tree (AST), which is thus a type of TL Tree (TLT). Over this AST,
several passes are made to rearrange the tree into an intermediate representation. This rearrangement is accomplished by first
applying well-known logical equivalences and then followed by cleaning (e.g. aggregating redundancies). The ultimate product
is a TLT with structure that is amenable to the decompositional results.

To apply the main results recursively and generate the decomposed Value graph, we traverse the TLT and for each node,
we apply the decomposition procedure outlined in Thm. 4. This involves identifying the relevant substructures, including
constants (atomic predicates), negations, minima, maxima, and nodes which represent Value functions. After final cleaning
passes, the resulting decomposed Value graph (DVG) is outputted, defining a topological order of nodes, which may be queried
to assess a trajectory as well as identify dependencies, and thus suffices for dynamic programming and VDPPO.

K. VDPPO DETAILS

In this section we further describe our algorithm, VDPPO. VDPPO is a specialized form of PPO [79], designed to leverage
the decomposed Value graph (DVG). We outline the two augmentations that distinguish it from standard PPO here.

1. The advantage and targets are solved with A, RA, and RAℓ Bellman eqns. and bootstrapped Values. As given
by the main results, the Bellman Value for a complex TL predicate may be decomposed into a graph of Bellman Values,
connected by these atomic BEs. Hence, the Value at each node in the DVG may be approximated in the limit of discounting
by the appropriate BE as a function of its dependencies: its decomposed sub-Values and the relevant predicates. To avoid
topographically sequential approximation, we use the current Value approximations of the critic to solve these updates. This
is denoted by the feedback loop in Fig. 4.

2. Nodes are embedded, allowing for a unified representation for each actor and critic We hypothesize that different
Values in the DVG may share some similarity, implying the policies do as well, and thus may be jointly approximated by
a single representation. Namely, we augment the states with a current Value node and - with a one-hot encoding - condition the
MLP for each actor and critic on mixed-node batches. We validate this hypothesis and design choice in the ablations in Sec. N,
demonstrating this yields equivalent performance while vastly improving the scaling ability compared to previous approaches [5].

Additionally, for live roll-outs and evaluation, we define the policy such that upon satisfying the trigger condition given
in Sec.I, the current Value node switches to the triggered node in the current augmented state.

L. ENVIRONMENTS

We give here additional details on the environments tested in this work. The reader may refer to the main text for graphics
and specs. We will publish all code after the anonymous stage of review is complete.
DoubleInt: The DoubleInt env is defined by up to N agents with 2-dimensional double integrator dynamics and velocity-

tracking control. Namely, for each agent, the discrete action sets a desired velocity which is then tracked by a proportional con-
troller in the acceleration (with kp = 1). The possible discrete actions correspond to ±1 per dimension, multiplied by the max accel-
eration. Velocity and acceleration limits are set per-agent. In the three sub-envs, Breadth, Depth, Agents (dim.), we vary
the number of targets to reach (any order), the number of targets to reach sequentially, and the number of agents and number of tar-
gets to reach (any order) respectively. In all cases, we define a set of obstacles for which all specifications involve avoid predicates.
Herding: The Herding env is an augmentation of the DoubleInt env, where we have a team of two agents (the

herders) and multiple sheep agents (the herd). The sheep agents are defined by their own fixed policy which samples an action
which maximizes the weighted soft-min of their distance to the herders, the walls and each another. The herders are defined
such that one is twice as fast as the other, while the herders move at a maximum speed equivalent to the slow herder. A narrow
gap divides the herders from the herd initially, as well as the target location of the herd and their initial position. The goal of
the task is defined by moving the herd through the narrow passage toward the target region on the otherside and contain them
there, while avoiding obstacles and collision. This additionally two intermediate goals to have the herd before the passage, and
then to have the herd after the passage, which must be achieved sequentially. The full specification is given in the main text.
Delivery: The Delivery env is an augmentation of the DoubleInt env, where we have a team of three agents –

two small, fast agents (the delivery robots) and one, big slow agent (the resupply truck) – and randomly spawning targets
(delivery locations). The goal of the task is for the agents to recurrently reach the target locations and then recurrently visit
the resupply truck. After a delivery target is reached by the corresponding agent, the location jumps to a new random location.
Additionally, the domain is defined with the same obstacles used in the DoubleInt env, and the team must avoid collision
with the obstacles and one another, despite both needing to resupply at the mobile agent. All agents are mobile and hence

31

the truck agent may dynamically adjust its location to suit the current positions. Note, this simulated env differs from the
hardware version, which includes a different obstacle layout as well as an additional aerial obstacle (no fly zone).
Manipulator: The Manipulator env is taken from [80], and involves a manipulator which must grasp and interact

with objects in the environment. The specification for this task is to place the cube inside the drawer and eventually always
have the drawer closed. Additional objects exist in the environment but have no relevance to task completion.

M. BASELINES

In this section we discuss the baselines employed in this work.
LCRL: This baseline [69] is a deep RL method that augments the MDP with an automata for learning TL solutions. Specifically,

an actor-critic variation of PPO is designed such that they are conditioned on the automaton and the current state of an augmented
trajectory. As this is just another variation of PPO, we employ the same parameter set as used in VDPPO for a fair comparison.

TL-MPPI: This baseline is an extension of Model Predictive Path Integral (MPPI) [70] to tackle TL problems [71], which
we denote TL-MPPI. Namely, this method plans a trajectory based on MPPI sample-based optimization of the TL robustness
metric. The method in the work does not function adaptively as the controller has no memory without state-augmentation
or automaton, however, we employ it as a trajectory optimization method which the agent then tracks. The parameters that
worked best in the given environments included: 1000 samples per step, a horizon of 100 steps, 20 iterations per step, an
initial standard deviation of 50, λ = 1, and an iteration temperature (shrink) parameter of 0.6.

N. ABLATIONS

Here, we provide additional ablation experiments to analyze the design of our algorithm, VDPPO. In [5], authors similarly
derived decompositional Value results, although for a greatly reduced set of predicates, and then faced the practical question
of how to employ these results to learn the critics (Value estimates) effectively, deciding to use a different actor and critic
for each decomposition. While this performed well for the dual-specifications that were considered, this approach scales poorly
to tasks with complex logic, as the number of required actors and critics can grow combinatorially (see Thm.1).

Moreover, while Values can vary significantly for different rewards and specifications, in many practical cases, tasks often
involve different sub-tasks which themselves differ only by translation (e.g. identical configuration goals in different locations),
order (e.g. iteratively unlock doors with keys) or other simple transformation or symmetry. Under certain variations, the
resulting Bellman Value may indeed differ only by the same transformation. In such cases, a partial consolidation of the
representations may accomplish sufficient approximation while greatly reducing the learning challenge.

In VDPPO, we employed this idea, by embedding all Values into a shared space with the one-hot encoding to allow the actor
and critic to to each use a shared MLP trunk (see Section K for details). To analyze the importance of this design choice, we
compare against a version of VDPPO where each critic and actor has its own separate MLP trunk (i.e. no shared parameters).
Moreover, we scan this comparison over an increasing range in the number of layers in the shared trunk (or each independent
body, when not shared), to analyze the importance of the depth of the shared representation. The results are plotted in Fig. 9.

From a performance-only perspective, we find that sharing parameters for the value function alone erodes success rate
while sharing parameters for the actor boosts success rate, and when combined, we observe performance that is nearly identical
to performance without sharing. This result is inspiring as the shared architectures train nearly N -times faster than the standard
approach employed in [5], where N is the quantity of decompositions.

−0.12 −0.08 −0.04 0.00
Δ Success Rate (vs "No Sharing")

No Sharing

Shared Actor Only

Shared Critic Only

Share Both

Fig. 9: Effect of parameter sharing. Sharing parameters for the actor only improves performance while reduce the variance.

O. HARDWARE

In the hardware experiments, we evaluate VDPPO performance in the Herding and Delivery tasks. In both tasks, the state
position is reported by HTC Vive base stations in communication with the an attached Lighthouse deck to each Crazyflie.
The Go2 quadruped’s location is integrated into the same framework by attaching a propeller-less Crazyflie to its chassis,
which transmits its position data to a single computer. The state of each agent is concatenated to form the full state used
by the VDPPO policy, which is inferred on the local CPU of the coordinating laptop. The output action velocity commands
are broadcasted to each agent’s onboard controller, which tracks the transmitted velocity setpoint.

32

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: A Bradford Book, 2018.
[2] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “LTL and beyond: Formal languages

for reward function specification in reinforcement learning,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization,
1 Aug. 2019, pp. 6065–6073.

[3] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi formulation of reachable sets for
continuous dynamic games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp. 947–957, 2005.

[4] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems with time-varying dynamics, targets and
constraints,” in Hybrid Systems: Computation and Control. ACM, 2015.

[5] W. Sharpless, D. Hirsch, S. Tonkens, N. Shinde, and S. Herbert, “Dual-objective reinforcement learning with novel
hamilton-jacobi-bellman formulations,” arXiv preprint arXiv:2506.16016, 2025.

[6] M. H. Cohen, Z. Serlin, K. Leahy, and C. Belta, “Temporal logic guided safe model-based reinforcement learning: A
hybrid systems approach,” Nonlinear Anal. Hybrid Syst., vol. 47, no. 101295, p. 101295, Feb. 2023.

[7] W. Qiu, W. Mao, and H. Zhu, “Instructing goal-conditioned reinforcement learning agents with temporal logic objectives,”
Neural Inf Process Syst, vol. 36, pp. 39 147–39 175, 2023.

[8] T. Brázdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský, M. Kwiatkowska, D. Parker, and M. Ujma, “Verification
of Markov decision processes using learning algorithms,” arXiv [cs.LO], 10 Feb. 2014.

[9] N. Hamilton, P. K. Robinette, and T. T. Johnson, “Training agents to satisfy timed and untimed signal temporal logic
specifications with reinforcement learning,” in Software Engineering and Formal Methods, ser. Lecture notes in computer
science. Cham: Springer International Publishing, 2022, pp. 190–206.

[10] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A learning based approach to control synthesis of
Markov decision processes for linear temporal logic specifications,” in 53rd IEEE Conference on Decision and Control.
IEEE, Dec. 2014, pp. 1091–1096.

[11] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control synthesis from linear temporal logic specifications
using model-free reinforcement learning,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2020, p. 10349–10355.

[12] F. Bacchus, C. Boutilier, and A. J. Grove, “Rewarding behaviors,” in Proceedings of the National Conference on Artificial
Intelligence. cs.toronto.edu, 4 Aug. 1996, pp. 1160–1167.

[13] S. Thiebaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza, “Decision-theoretic planning with non-Markovian rewards,”
J. Artif. Intell. Res., vol. 25, pp. 17–74, 29 Jan. 2006.

[14] A. Camacho, O. Chen, S. Sanner, and S. McIlraith, “Non-Markovian rewards expressed in LTL: Guiding search via reward
shaping,” Proceedings of the International Symposium on Combinatorial Search, vol. 8, no. 1, pp. 159–160, 1 Sep. 2021.

[15] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Using reward machines for high-level task specification
and decomposition in reinforcement learning,” ICML, vol. 80, pp. 2112–2121, 3 Jul. 2018.

[16] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning for robust satisfaction of signal temporal logic
specifications,” in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, Dec. 2016, pp. 6565–6570.

[17] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic rewards,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Sep. 2017, pp. 3834–3839.

[18] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan, “Modular deep reinforcement learning for continuous motion
planning with temporal logic,” IEEE Robotics and Automation Letters, vol. 6, no. 4, p. 7973–7980, Oct. 2021. [Online].
Available: http://dx.doi.org/10.1109/LRA.2021.3101544

[19] R. Wang, P. Zhong, S. S. Du, R. R. Salakhutdinov, and L. Yang, “Planning with general objective functions: Going
beyond total rewards,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 14 486–14 497.

[20] W. Cui and W. Yu, “Reinforcement learning with non-cumulative objective,” IEEE Transactions on Machine Learning
in Communications and Networking, vol. 1, pp. 124–137, 2023.

[21] Y. Tang, Y. Zhang, J. Ackermann, Y.-J. Zhang, S. Nishimori, and M. Sugiyama, “Recursive reward aggregation,” in
Reinforcement Learning Conference, 2025.

[22] H. van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang, “Hybrid reward architecture for reinforcement
learning,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 5398–5408.

[23] S. Pitis, “Consistent aggregation of objectives with diverse time preferences requires non-markovian rewards,” in
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[24] Z. Lin, D. Yang, L. Zhao, T. Qin, G. Yang, and T.-Y. Liu, “Rdˆ2: Reward decomposition with representation decomposition,”

33

http://dx.doi.org/10.1109/LRA.2021.3101544

in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11 298–11 308.

[25] E. Altman, Constrained Markov decision processes: Stochastic modeling. Boca Raton: Routledge, 13 Dec. 2021.
[26] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” ICML, vol. abs/1705.10528, pp. 22–31,

30 May 2017.
[27] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained Markov decision processes,” ICML, vol. 119, pp.

9797–9806, 12 Jul. 2020.
[28] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforcement learning by PID lagrangian methods,” ICML,

vol. 119, pp. 9133–9143, 8 Jul. 2020.
[29] T. Li, Z. Guan, S. Zou, T. Xu, Y. Liang, and G. Lan, “Faster algorithm and sharper analysis for constrained Markov

decision process,” Oper. Res. Lett., vol. 54, no. 107107, p. 107107, May 2024.
[30] Y. Chen, J. Dong, and Z. Wang, “A primal-dual approach to constrained Markov decision processes,” arXiv [math.OC],

26 Jan. 2021.
[31] S. Miryoosefi and C. Jin, “A simple reward-free approach to constrained reinforcement learning,” ICML, vol.

abs/2107.05216, pp. 15 666–15 698, 12 Jul. 2021.
[32] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-based constrained policy optimization,” arXiv

[cs.LG], 7 Oct. 2020.
[33] D. Ding, K. Zhang, T. Başar, and M. Jovanović, “Natural policy gradient primal-dual method for constrained Markov

decision processes,” Neural Inf Process Syst, vol. 33, pp. 8378–8390, 2020.
[34] C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy optimization,” arXiv [cs.LG], 28 May 2018.
[35] A. Gattami, Q. Bai, and V. Aggarwal, “Reinforcement learning for constrained Markov decision processes,” AISTATS,

vol. 130, pp. 2656–2664, 2021.
[36] H. Satija, P. Amortila, and J. Pineau, “Constrained Markov decision processes via backward value functions,” ICML,

vol. 119, pp. 8502–8511, 12 Jul. 2020.
[37] A. Castellano, H. Min, E. Mallada, and J. A. Bazerque, “Reinforcement learning with almost sure constraints,” in

Proceedings of The 4th Annual Learning for Dynamics and Control Conference, ser. Proceedings of Machine Learning
Research, vol. 168. PMLR, 2022, pp. 559–570.

[38] J. McMahan and X. Zhu, “Anytime-constrained reinforcement learning,” in Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, S. Dasgupta, S. Mandt,
and Y. Li, Eds., vol. 238. PMLR, 02–04 May 2024, pp. 4321–4329.

[39] M. A. Wiering, M. Withagen, and M. M. Drugan, “Model-based multi-objective reinforcement learning,” in 2014 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, Dec. 2014, pp. 1–6.

[40] M. K. Van and A. Nowé, “Multi-objective reinforcement learning using sets of Pareto dominating policies,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3483–3512, 2014.

[41] X.-Q. Cai, P. Zhang, L. Zhao, J. Bian, M. Sugiyama, and A. Llorens, “Distributional Pareto-optimal multi-objective
reinforcement learning,” Neural Inf Process Syst, vol. 36, pp. 15 593–15 613, 2023.

[42] H. Mossalam, Y. M. Assael, D. M. Roijers, and S. Whiteson, “Multi-objective deep reinforcement learning,” arXiv [cs.AI],
9 Oct. 2016.

[43] A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher, “Dynamic weights in multi-objective deep reinforcement
learning,” in Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 11–20.

[44] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective reinforcement learning and policy
adaptation,” in Advances in Neural Information Processing Systems. proceedings.neurips.cc, 2019.

[45] E. Liu, Y.-C. Wu, X. Huang, C. Gao, R.-J. Wang, K. Xue, and C. Qian, “Pareto set learning for multi-objective
reinforcement learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, no. 18, 2025.

[46] M. Liu, M. Zhu, and W. Zhang, “Goal-conditioned reinforcement learning: Problems and solutions,” arXiv [cs.AI], 20 Jan.
2022.

[47] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder,
V. Kumar, and W. Zaremba, “Multi-goal reinforcement learning: Challenging robotics environments and request for
research,” arXiv [cs.LG], 26 Feb. 2018.

[48] Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng, “Exploration via hindsight goal generation,” Neural Inf Process Syst,
vol. 32, pp. 13 464–13 474, 1 Jun. 2019.

[49] J. Y. Ma, J. Yan, D. Jayaraman, and O. Bastani, “Offline goal-conditioned reinforcement learning via f-advantage
regression,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 310–323.

[50] A. Campero, R. Raileanu, H. Küttler, J. B. Tenenbaum, T. Rocktäschel, and E. Grefenstette, “Learning with AMIGo:

34

Adversarially motivated intrinsic goals,” arXiv [cs.LG], 22 Jun. 2020.
[51] A. R. Trott, S. Zheng, C. Xiong, and R. Socher, “Keeping your distance: Solving sparse reward tasks using self-balancing

shaped rewards,” Neural Inf Process Syst, vol. abs/1911.01417, 4 Nov. 2019.
[52] B. Eysenbach, T. Zhang, R. Salakhutdinov, and S. Levine, “Contrastive learning as goal-conditioned reinforcement

learning,” Neural Inf Process Syst, vol. abs/2206.07568, pp. 35 603–35 620, 15 Jun. 2022.
[53] E. Chane-Sane, C. Schmid, and I. Laptev, “Goal-conditioned reinforcement learning with imagined subgoals,” ICML,

vol. abs/2107.00541, pp. 1430–1440, 1 Jul. 2021.
[54] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal temporal logic meets reachability: Connections and

applications,” in International Workshop on the Algorithmic Foundations of Robotics. Springer, 2018, pp. 581–601.
[55] O. So, C. Ge, and C. Fan, “Solving minimum-cost reach avoid using reinforcement learning,” in The

Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. [Online]. Available:
https://openreview.net/forum?id=jzngdJQ2lY

[56] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and liveness guarantees through reach-avoid
reinforcement learning,” in Proceedings of Robotics: Science and Systems, Held Virtually, July 2021.

[57] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin, “Bridging hamilton-jacobi safety analysis and
reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 8550–8556.

[58] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao, “Learning stabilization control from observations by learning
lyapunov-like proxy models,” 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.

[59] D. Yu, H. Ma, S. Li, and J. Chen, “Reachability constrained reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2022, pp. 25 636–25 655.

[60] K. Zhu, F. Lan, W. Zhao, and T. Zhang, “Safe multi-agent reinforcement learning via approximate hamilton-jacobi
reachability,” J. Intell. Robot. Syst., vol. 111, no. 1, 30 Dec. 2024.

[61] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in International symposium on formal
techniques in real-time and fault-tolerant systems. Springer, 2004, pp. 152–166.

[62] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in International conference
on formal modeling and analysis of timed systems. Springer, 2010, pp. 92–106.

[63] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances,”
in 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017, pp. 2242–2253.

[64] M. Ganai, Z. Gong, C. Yu, S. Herbert, and S. Gao, “Iterative reachability estimation for safe reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 36, pp. 69 764–69 797, 2023.

[65] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.
[66] O. Grumberg, E. Clarke, and D. Peled, “Model checking,” in International Conference on Foundations of Software

Technology and Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 1999.
[67] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree approach to data classification using

signal temporal logic,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control,
2016, pp. 1–10.

[68] Y. Meng, F. Chen, and C. Fan, “Tgpo: Temporal grounded policy optimization for signal temporal logic tasks,” arXiv
preprint arXiv:2510.00225, 2025.

[69] M. Hasanbeig, D. Kroening, and A. Abate, “Lcrl: Certified policy synthesis via logically-constrained reinforcement
learning,” in International Conference on Quantitative Evaluation of SysTems. Springer, 2022, pp. 217–231.

[70] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive driving with model predictive path
integral control,” in 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016, pp. 1433–1440.

[71] P. Halder, H. Homburger, L. Kiltz, J. Reuter, and M. Althoff, “Trajectory planning with signal temporal logic costs using
deterministic path integral optimization,” arXiv preprint arXiv:2503.01476, 2025.

[72] L. Yifru and A. Baheri, “Concurrent learning of control policy and unknown safety specifications in reinforcement
learning,” IEEE Open Journal of Control Systems, vol. 3, pp. 266–281, 2024.

[73] D. Kasenberg and M. Scheutz, “Interpretable apprenticeship learning with temporal logic specifications,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), 2017, pp. 4914–4921.

[74] M. Gaon and R. Brafman, “Reinforcement learning with non-markovian rewards,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, pp. 3980–3987, Apr. 2020.

[75] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, “Compositional reinforcement learning from logical specifications,”
in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 10 026–10 039.

[76] A. Duret-Lutz, E. Renault, M. Colange, F. Renkin, A. Gbaguidi Aisse, P. Schlehuber-Caissier, T. Medioni, A. Martin,
J. Dubois, C. Gillard et al., “From spot 2.0 to spot 2.10: What’s new?” in International Conference on Computer Aided
Verification. Springer, 2022, pp. 174–187.

35

https://openreview.net/forum?id=jzngdJQ2lY

[77] R. Diestel, Graph theory. Springer Nature, 2025.
[78] W. Rudin, “Principles of mathematical analysis,” 3rd ed., 1976.
[79] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized

advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.
[80] S. Park, K. Frans, B. Eysenbach, and S. Levine, “Ogbench: Benchmarking offline goal-conditioned rl,” in International

Conference on Learning Representations (ICLR), 2025.

36

	Abstract
	Introduction and Related Work
	Contributions
	Preliminaries
	Problem Formulation
	MOTIVATION
	Why the Value function?
	Optimality versus Satisfaction

	RESULTS
	Agreeable Algebra
	N-Until-Conjunction Decomposition
	Recursive Decompositions
	A general result for a class of predicates

	Algorithm(s)
	Simulation Results
	Setup
	Results

	Hardware Results
	Herding
	Delivery

	Conclusion
	More Related Works
	Temporal Logic
	Logic vs. Value Examples
	Agreeable Algebra
	N-RA Results
	N-RA Results
	G(…) Fixed Point Iteration
	Single-Predicate Recurrence
	Multi-Predicate Recurrence

	General Result
	Policy Results
	VALTR Details
	VDPPO Details
	Environments
	Baselines
	Ablations
	Hardware

