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ABSTRACT

Computation methods for solving entropy-regularized reward optimization—a
class of problems widely used for fine-tuning generative models—have advanced
rapidly. Among those, Adjoint Matching (AM, Domingo-Enrich et al., 2025)
has proven highly effective in continuous state spaces with differentiable rewards.
Transferring these practical successes to discrete generative modeling, however,
remains particularly challenging and largely unexplored, mainly due to the dras-
tic shift in generative model classes to discrete state spaces, which are nowhere
differentiable. In this work, we propose Discrete Adjoint Matching (DAM)—a
discrete variant of AM for fine-tuning discrete generative models characterized by
Continuous-Time Markov Chains, such as diffusion-based large language models.
The core of DAM is the introduction of discrete adjoint—an estimator of the op-
timal solution to the original problem but formulated on discrete domains—from
which standard matching frameworks can be applied. This is derived via a purely
statistical standpoint, in contrast to the control-theoretic viewpoint in AM, thereby
opening up new algorithmic opportunities for general adjoint-based estimators.
We showcase DAM’s effectiveness on synthetic and mathematical reasoning tasks.

1 INTRODUCTION

We consider an entropy-regularized optimization in a state space X over a finite horizon t ∈ [0, 1]:

min
u

E [g(X1)] + DKL(p
u(X)||pbase(X)) (1)

where the objective consists of a terminal loss g(·) incurred at t = 1 and a Kullback–Leibler (KL)
divergence DKL(·||·) that regularizes the model distribution pu over some stochastic processes X =

(Xt)t∈[0,1] parametrized by u, to the base distribution pbase ≡ pubase parametrized by ubase.

Optimization problems of the form (1) are ubiquitous at the intersection of reinforcement learning
(Levine, 2018), stochastic control (Theodorou et al., 2010), and probabilistic inference (Blei et al.,
2017). In the context of generative modeling, the primary motivation for studying (1) stems from the
fact that —when the base distribution satisfies the memoryless condition pbase(X1|X0) = pbase(X1)

1

— the optimal solution to (1) is known analytically by

p⋆(X) ≡ pu
⋆

(X) ∝ pbase(X)e−g(X1) (2)

Such an analytic expression is particularly useful for post-training generative models (Ziegler et al.,
2019; Ouyang et al., 2022; Fan et al., 2023b), where we wish to fine-tune pretrained models given
some reward function r(x). Specifically, by considering pbase as the pretrained model and setting the
terminal loss as negative reward, i.e., g(x) := −r(x), the optimization problem in (1) can be best
understood as variational inference, seeking a posterior close to the prior, pretrained, distribution
while being tilted exponentially toward high-reward regions, i.e., p⋆(X1) ∝ pbase(X1)e

r(X1).

Computational methods for solving (1) has advanced rapidly in recent years. Among those, methods
based on Adjoint Matching (AM, Domingo-Enrich et al., 2025) have shown highly effective in
continuous state spaces with differentiable terminal losses, e.g., X = Rd and ∇g : Rd → Rd,
achieving strong results in applications such as image fine-tuning (Domingo-Enrich et al., 2025),
molecular generation (Havens et al., 2025), and Boltzmann distribution sampler (Liu et al., 2025a).
Concretely, when pu is the distribution induced by a class of stochastic differential equations (SDEs)
parametrized by dXt = σ2

t ut(Xt)dt+σtdWt with some diffusion σt, Domingo-Enrich et al. (2025)
1The memoryless condition readily holds for all base models considered. See Appendix A.1 for details.
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observed that any optimal solution must satisfy a fixed-point equation, presented compactly by

u⋆
t (x) = ubase

t (x)−Ep⋆(X|Xt=x)

[
ã1(X)−

∫ 1

t

∇ubase
τ (Xτ ) · ãτ (X)dτ︸ ︷︷ ︸

=: ãt(X)

]
, ã1(X) = ∇g(X1) (3)

where ubase defines the base distribution pbase ≡ pubase and∇ubase : Rd → Rd×d denotes its Jacobian.
The core of Adjoint Matching is the introduction of the (lean) adjoint ãt(X) ∈ Rd—an estimator
of the optimal solution u⋆

t (x)—that can be computed efficiently through backward integration from
the terminal condition ã1(X) = ∇g(X1), which is exactly the gradient of the terminal loss.

In this work, we focus specifically on discrete generative modeling, a heated research area that has
gained significant attention across both industry and academia (Touvron et al., 2023; Achiam et al.,
2023; Kasneci et al., 2023), fueled by the transformative success of large language models (LLMs)
in language understanding (Wei et al., 2022; Bai et al., 2023), code generation (Chen et al., 2021;
Team et al., 2023), and mathematical reasoning (Shao et al., 2024; Nie et al., 2025). In all cases, the
state spaces are represented by the product of a discrete finite set, X discrete = {1, · · · ,M}N . That is,
each sample x = (x1, · · · , xN ) ∈ X discrete corresponds to a sequence of N discrete variables, where
each variable xi is the index of an element—also called token—from a vocabulary list of size M .

Having to consider a discrete state space necessitates a family of discrete generative models. No-
tably, most of which can be formulated as the Continuous-Time Markov Chain (CTMC, Anderson,
2012)—a stochastic jump process on a finite set, uniquely characterized by its transition rate,2

ut(y, x) := lim
∆t→0

p(Xt+∆t = y|Xt = x)− δx(y)

∆t
(4)

which quantifies the infinitesimal transition probability from x to any y ̸= x at time t. We denote
δx(y) as the indicator function, equaling one if y = x and zero if otherwise. CTMC was initially
introduced by discrete diffusion models (Austin et al., 2021; Campbell et al., 2022) and later shown
to generalize masked and auto-regressive models (Sahoo et al., 2024; Shi et al., 2024).

Building on the practical success of AM in continuous domains, one question arises immediately:

Does a variant of Adjoint Matching exist for discrete generative modeling?

More concretely, we are interested in whether a fixed-point equation analogous to (3) exists when
the optimization problem in (1) is formulated on the discrete state space X = X discrete, where pu

and pbase corresponds respectively to the distributions of fine-tuned and pretrained CTMC models.
Such a discrete extension, if any, remains particularly challenging and has therefore been largely
unexplored—primarily due to the non-differentiability of discrete state spaces and the drastic change
in the class of distributions considered. Both prevent a naive adaptation of (3) in discrete domains,
as g(x) is no longer differentiable and ubase

τ now represents the rate of the base CTMC rather than
the drift of an SDE. It is perhaps even questionable whether a discrete variant of AM exists at all.

To this end, we propose Discrete Adjoint Matching (DAM), a discrete analogy of Adjoint Match-
ing that solves the same optimization problem in (1) but for CTMC models on discrete state spaces.
Unlike original AM, which is based exclusively on a control-theoretic framework (Bellman, 1966;
Fleming & Rishel, 2012), we derive our DAM through a purely statistical standpoint that is more
straightforward to follow, while still providing full control-theoretic analysis for interested readers.
This necessitates lifting AM to a more abstract design space and, from which, specializing to other
model classes such as CTMC. We demonstrate how Dynkin’s formula (Piunovskiy & Zhang, 2020)
enables such generalization by providing an estimator of a function value from any stochastic pro-
cess. Applying the formula to estimate the optimal CTMC rate u⋆

t (y, x), defined formally in the next
section, from CTMC processes yields a discrete counterpart of adjoint (3)—the discrete adjoint.

We validate DAM on fine-tuning diffusion-based LLMs, particularly LLaDA-8B-Instruct (Nie et al.,
2025), on mathematical reasoning datasets, where fine-tuning methods have proven essential for
improving performance (Shao et al., 2024; Zhao et al., 2025). To accommodate the extremely large
discrete state spaces that can hinder naive implementation of discrete adjoint, we exploit the masked
structures embedded in all base distributions considered (Sahoo et al., 2024) and propose additional
variance reduction techniques, which together enhance training stability and sampling efficiency.

2By construction, u in (4) satisfies the rate condition: ut(y, x) ≥ 0 for all y ̸= x and
∑

y∈X ut(y, x) = 0.
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In summary, we present the following contributions:

• We propose Discrete Adjoint Matching (DAM), a discrete counterpart of Adjoint Matching
(Domingo-Enrich et al., 2025) that solves the same entropy-regularized optimization (1) but is
specifically formulated for discrete state spaces with Continuous-Time Markov Chain (CTMC).

• We derive DAM through a purely statistical perspective—by interpreting discrete adjoint as an
estimator of the optimal solution—thereby avoiding the convoluted control-theoretic derivation
adopted in original AM and providing a more general framework for adjoint-based estimators.

• We address practical challenges of implementing DAM in extremely large discrete state spaces—
typical of modern discrete generative modeling—by applying importance-weighting techniques
for training stability and by exploring further simplification via masked diffusion models.

• We validate the empirical performance of DAM in fine-tuning discrete generative models—such
as diffusion-based LLMs—given prescribed reward functions on mathematical reasoning tasks.

2 DISCRETE ADJOINT MATCHING

We present Discrete Adjoint Matching (DAM), a computational method for learning a CTMC
model pu that solves (1). It does so by matching the parametrized rate uθ

t (y, x) with an estimator of
the optimal rate u⋆

t (y, x), obtained via the discrete adjoint, analogous to its continuous counterpart
in (3). Such an interpretation facilitates a purely statistical approach—to estimating u⋆—and allows
us to bypass the seemingly convoluted SOC-based derivation, which we nevertheless present in
Section 3 for interested readers. Conceptually, we seek an objective of the following form:

L(θ) = EX

[
D(uθ(·), u⋆(·|X))

]
(5)

where D(·, ·) is some matching function and u⋆(·|X) is an adjoint-based estimator of u⋆ given the
trajectory X . For instance, AM (Domingo-Enrich et al., 2025) considers D(a, b) := ∥a − b∥2 and,
as implied in (3), computes the adjoint-based estimator by u⋆

t (x|X) := ubase
t (x)− ãt(X), whereas

DAM instantiates the matching objective (5) for CTMC models. All proofs are left in Appendix B.

2.1 DISCRETE ADJOINT AS ESTIMATOR OF THE OPTIMAL RATE

We begin by specifying the mathematical object of interest—the optimal rate u⋆ to the problem (1)—
which the discrete adjoint is designed to estimate. Recall from (4) that the rate is uniquely deter-
mined by the CTMC distribution via its first-order derivative. In the case of u⋆, since the optimal
distribution p⋆ has an analytic form (2), so does its optimal rate (Wang et al., 2025; Zhu et al., 2025):

∀y ̸= x, u⋆
t (y, x) = ubase

t (y, x)e−Vt(y)+Vt(x), where Vt(x) := − log
∑
z

pbase
1|t (z|x)e

−g(z) (6)

is the value function that quantifies the optimal cost-to-go (Bellman, 1954), ubase
t (y, x) is the base

rate that defines the base CTMC distribution pbase, and pbase
1|t shorthands its conditional distribution.

Derivation of (6) is standard but somewhat convoluted; we refer to Appendix A for details.

With the analytic expression in (6), estimating the optimal rate u⋆ reduces to estimating the exponen-
tial value difference, e−Vt(y)+Vt(x), as ubase is known a prior. Following the interpretation in (5), we
can design the discrete adjoint as an estimator of the exponential of the value difference, given
a CTMC process X . This approach—estimating a function value using a stochastic process—is
precisely what is provided by Dynkin’s formula (Piunovskiy & Zhang, 2020, Theorem 2.4.1):
Lemma 2.1 (Dynkin’s formula). For a given function ft(x) and a CTMC model pu, it holds that

ft(x) = Epu(X|Xt=x)

[
f1(X1)−

∫ 1

t

(
(∂τfτ )(Xτ ) +

∑
y

uτ (y,Xτ )fτ (y)

)
dτ

]
. (7)

Formally, Dynkin’s formula applies to any Feller process (Rogers & Williams, 2000), which gener-
alizes both SDE and CTMC processes. On SDEs, it yields the celebrated Itô lemma (Itô, 1951), a
fundamental tool in the development of advanced diffusion models (Liu et al., 2022; Skreta et al.,
2024; Karczewski et al., 2024). In contrast, Lemma 2.1 specializes the result to CTMC, which, in
its essence, enables estimation of any discrete-space function given any CTMC process.
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We are now ready to present our main result. By applying Lemma 2.1 with ft(x; y) := e−Vt(y)+Vt(x)

for every x ̸= y and u := u⋆ as the optimal rate, we obtain an estimator of the exponential value
difference under the optimal distribution—in the same spirit of how the continuous adjoint in (3)
estimates the optimal SDE drift under p⋆. This leads to the following result:

Theorem 2.2 (Discrete adjoint—adjoint system for CTMC). Let u⋆
t (y, x) be the optimal rate to the

entropy-regularized problem in (1) for CTMC models. Then, it holds for all y ̸= x that

u⋆
t (y, x) = ubase

t (y,x)Ep⋆(X|Xt=x)

[
ã1(y;X) +

∫ 1

t

∑
z

ubase
τ (z,y)ãτ (z;X)dτ︸ ︷︷ ︸

=: ãt(y;X)

]
, ã1(y;X) = e−g(y)+g(X1)

(8)

where the discrete adjoint ãt(y;X) ∈ R>0 is an unbiased estimator of e−Vt(y)+Vt(x) under p⋆.

Comparing (8) to (3), our proposed discrete adjoint shares a strikingly similar structure to its con-
tinuous counterpart, yet differs in several profound respects. Most notably, the terminal discrete
adjoint ã1 becomes the exponential of the terminal loss difference, as opposed to the gradient in (3).
Next, to better examine the differences between their dynamics, we can rewrite (8) in vector form:

ãt(X) = ã1(X) +

∫ 1

t

U base
τ · ãτ (X)dτ, where ãτ (X) ∈ R|X | and U base

τ ∈ R|X |×|X| (9)

are respectively the discrete adjoint vector with ãτ (y;X) as its y-element and the base rate matrix
with ubase

τ (z, y) as its (z, y)-entry. That is, the Jacobian matrix ∇ubase
τ ∈ Rd×d in (3) is effectively

replaced by U base
τ ∈ R|X |×|X|. Finally, the discrete adjoint perturbs the base rate in a multiplicative

manner, ubaseE[ã], in contrast to the additive perturbation,ubase−E[ã], from continuous adjoint in (3).

Given Theorem 2.2, designing the matching function D(·, ·) is a straightforward application of the
matching framework (Lipman et al., 2024; Holderrieth et al., 2024). For any Bregman divergence,
Dϕ(u,w) := ϕ(u)− ϕ(w)− ⟨u− w, d

dwϕ(w)⟩, defined by a convex function ϕ, it holds that

u⋆
t (y, x) = argmin

u
Ep⋆(X|Xt=x)

[
Dϕ

(
ut(y, x), u

base
t (y, x)ãt(y;X)

)]
(10)

We highlight the significance of these theoretical results, which provide a statistically rigorous foun-
dation for deriving adjoint-based estimators with any stochastic processes, including CTMC models.

2.2 IMPROVED TECHNIQUES IN PRACTICES

In this subsection, we address practical challenges of naively matching the discrete adjoint in (8)
with (10), and provide improved techniques that give rises to our final algorithm.

Improved discrete adjoint Despite the significance of Theorem 2.2 in characterizing the adjoint
system for CTMC, the discrete adjoint in (8) and (9) is prohibitively expansive to compute, due to
the need to sum over the entire state space z ∈ X at every time step. For any reasonable discrete
generative problem—with, e.g., vocabulary size M ≈ 1000, context length N ≈ 100, and thus
|X | = MN ≈ 10300—such computation becomes simply unaffordable. This necessitates further
simplification for tractability, and we present one of which below:

Proposition 2.3 (Analytic discrete adjoint). The discrete adjoint in (8) admits an analytic solution:

ãt(y;X1) =
∑
z

pbase
1|t (z|y)e

−g(z)+g(X1) (11)

The estimator ãt(y;X1) in (11) arises from the fact that the discrete adjoint dynamics follow a
linear ordinary differential equation (ODE)—as suggested in (9)—and hence admit analytic solu-
tions. Although computing ãt(y;X1) still involves summing over z ∈ X , it can be interpreted
probabilistically as an expectation over the conditional distribution pbase

1|t(·|y) and estimated through
Z ∼ pbase

1|t(·|y), which corresponds to samples generated the base CTMC from Xt = y. Essentially,
ãt(y;X1) in (11) provides a tractable solution of the original discrete adjoint ãt(y;X) in (8).
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Algorithm 1 Discrete Adjoint Matching (DAM)

Require: non-differentiable terminal loss g(x), parametrized rate uθ
t (y, x), and base rate ubase

t (y, x)
1: repeat
2: Sample from model {(X(i)

0 , X
(i)
1 )} ∼ pū, where ū = stopgrad(uθ)

3: Update replay buffer B ← B ∪ {(X(i)
0 , X

(i)
1 )}

4: for l in 1, 2, . . . , L do
5: Sample time t ∼ U [0, 1] and state Xt ∼ pbase

t|0,1(·|X0, X1) where (X0, X1) ∼ B
6: Sample K model trajectories {X(k)} ∼ pū(·|Xt)
7: Set (Y,Z) as the first and last jumps of one of the trajectory X(k)

8: Compute discrete adjoint ât(Y,Xt) ≡ ât(Y ;Z, {X(k)

1 }) in (13)
9: Take a gradient step∇LDAM(θ) on the weighted matching objective

LDAM(θ) := 1
pū
t (Y |Xt)

· DgKL

(
uθ
t (Y,Xt), (u

base
t ât)(Y,Xt)

)
(12)

10: end for
11: until converge

From Theorem 2.2, for ãt(y;X1) to serve as an unbiased estimator of the optimal rate u⋆, we must
sample X1 ∼ p⋆ from the optimal distribution—just as its continuous variant (3) requires X ∼ p⋆.
While one may follow original AM recipe by computing ãt(y;X1) with model samples X1 ∼ pu

and letting the bias reduce over training, we opt for an alternative better suited for discrete domains:
approximating the expectation of X1 ∼ p⋆ using model samples X1 ∼ pu with importance weight.
This leads to the following estimator, which empirically exhibits much lower bias and variance.
Proposition 2.4 (Importance-weighted discrete adjoint). Consider the following estimator

ât(y;Z, {X(k)
1 }) :=

pbase
1|t(Z|y)

pu
1|t(Z|y)e

−g(Z) ·

(
1

K

K∑
k=1

pbase
1|t(X

(k)
1 |x)

pu
1|t(X

(k)
1 |x)

e−g(X
(k)
1 )

)−1

(13)

where {X(k)
1 } ∼ pu1|t(·|x) and Z ∼ pu1|t(·|y) are generated model samples. Then, ât is a consistent

estimator of the discrete adjoint, i.e., limK→∞ E[ât(y;Z, {X(k)
1 })] = Ep⋆

1|t(X1|x) [ãt(y;X1)].

Comparing (13) to (11), the estimator ât effectively estimates e−g(z) with a single model sample
generated from Xt = y, and estimates eg(X1) with K model samples from Xt = x using self-
normalizing importance sampling (Neal, 2001). As these importance weights—the probability ratio
of pbase

1|t over pu1|t—can be easily estimated for CTMC (see Appendix A for details), we adopt the
estimator ât(y;Z, {X(k)

1 }) in (13) as the practical implementation of the discrete adjoint ãt(y;X).

Matching with generalized KL Next, we discuss choosing the matching function Dϕ(·, ·) from
the family of Bregman divergence, following (10). While a naive ℓ2-norm may be used, it is known
to neglect the necessary probabilistic structure in discrete domains, such as non-negativity (Lou
et al., 2023). A more suitable alternative for discrete modeling is the generalized KL (gKL):

DgKL(u,w) :=
∑
y ̸=x

u(y, x)− w(y, x) + w(y, x) log
w(y, x)

u(y, x)
(14)

which corresponds to setting ϕ(a) :=
∑

i a(i) log a(i).

Sampling model inputs (y, x) Having determined the matching function in (14) and established
tractable adjoint estimator in (13), it remains to be discussed how to sample the model inputs (y, x).
Intuitively, for a given t, we wish to sample x = Xt from high-probability regions traversed by the
optimal CTMC. This is commonly implemented by a reciprocal projection Xt ∼ pbase

t|0,1(·|X0, X1)

with (X0, X1) ∼ B sampled from a replay buffer (Shi et al., 2023). Meanwhile, instead of sampling
y uniformly as suggested in (14), we sample y from the model y ∼ put (·|x) and debias the objective
accordingly with put (y|x)

−1. This leads to the final matching objective presented in (12).
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Adaptation to masked diffusion models While our DAM is designed for learning a CTMC pu

that solves the entropy-regularized optimization (1) given arbitrary base CTMC pbase, in practice,
most base processes are instantiated by masked diffusion models (Sahoo et al., 2024). These models
employ a simplified CTMC beginning from a fully masked state X0 = (m, · · · ,m) with a base rate:

∀y ̸= x, ubase
t (y, x) := λbase

t (x)Qbase(y|x), Qbase ∈ Qmask (15)

where λbase
t (x) ≥ 0 denotes the jump rate with λbase

0 (x) = 0 and λbase
1 (x)→∞, and Qmask represents

the class of the probabilities where Q(y|x) ≥ 0 if and only if y unmasks exactly one token of x,
e.g., y = (· · · , xn−1, yn, xn+1, · · · ) with yn ̸= xn = m; otherwise, Q(y|x) = 0.

Simplification of the base rate ubase in (15) leads to several practical advantages. Most notably,
it substantially reduces the modeling complexity3 of Q(·|x)—from O(MN ) to O(MN)—and en-
able modern parametrization from LLMs (Vaswani et al., 2017). Further, that Qbase(y|x) is time-
independent implies a much more efficient sampling procedure via any-order unmasking (Shi et al.,
2024). Below, we show that all these preferable features can be transferred to the optimal rate u⋆:
Proposition 2.5 (Masked optimal rate). Given the base rate ubase in (15), the optimal rate u⋆ satisfies

∀y ̸= x, u⋆
t (y, x) = λbase

t (x)Q⋆(y|x), Q⋆ ∈ Qmask (16)

Practically, Proposition 2.5 suggests that we can parametrize Qθ(y|x) within the same model class
of Qmask, match Qθ(y|x) with Qbase(y|x)â(y, x), then sample in the same any-order manner.

We highlight these discussions that lead to practical implementation of DAM in Algorithm 1.

3 THEORETICAL ANALYSIS

We highlight additional theoretical insights by re-deriving the discrete adjoint ãt(y;X) from a
stochastic control perspective (Bellman, 1966; Fleming & Rishel, 2012), which more closely follows
the original derivation in AM (Domingo-Enrich et al., 2025). All proofs are left in Appendix B.

3.1 FIXED-POINT EQUATION OF OPTIMAL RATE

We begin by introducing a new mathematical object Jt(x;u)—the expected accumulated cost under
some CTMC distribution pu(X), incurred from time t until the terminal, starting from the state x:

Jt(x;u) := E∼pu(X|Xt=x)

∫ 1

t

∑
y ̸=Xτ

(
ubase
τ − uτ + uτ log

uτ

ubase
τ

)
(y,Xτ )dτ + g1(X1)

 (17)

Since the integration in (17) corresponds to the KL divergence between the CTMC pu and pbase over
the interval [t, 1] (see Appendix A for details), the cost-to-go Jt(x;u) quantifies the objective in (1)
that matters for optimizing ut. Consequently, the optimal rate satisfies u⋆

t = argminu Jt(x;u), and
the value function—as the optimal cost-to-go functional—can be expressed by Vt(x) = Jt(x;u

⋆).
Below, we reveal this intertwined connection between u and Jt(x;u) with a fixed-point equation.
Lemma 3.1 (Fixed-point equation of u⋆). Let F be a mapping between the spaces of all possible
CTMC rates that satisfy the rate condition, i.e., Footnote 2. Specifically, for all y ̸= x, we have that

F : ut(y, x) 7→ ubase
t (y, x)e−Jt(y;u)+Jt(x;u) (18)

Then, the unique fixed point of the mapping F is the optimal rate u⋆
t (y, x), i.e., u⋆ = F(u⋆).

3.2 DISCRETE BASIC ADJOINT

The core of Lemma 3.1 is the observation that the optimal rate u⋆ is the unique fixed-point of the
relation ut(y, x) = ubase

t (y, x)e−Jt(y;u)+Jt(x;u). As such, one can directly optimize for a CTMC
rate to fit this relation. This is precisely the motivation underlying the Basic Adjoint Matching
(Domingo-Enrich et al., 2025), for which we provide a discrete analogue for CTMC models:

3Recall that M and N are respectively the vocabulary size and context length of the discrete state space X .
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Theorem 3.2 (Discrete basic adjoint matching). For any Bregman divergence Dϕ, the unique criti-
cal point of the following matching objective is the optimal rate:

u⋆
t (y, x) = argmin

u
Epū(X|Xt=x)

[
Dϕ(ut(y, x), u

base
t (y, x)at(y;X, ū)

]
(19)

where ū = stopgrad(u) and at(y;X, u) is the discrete basic adjoint obeying a backward ODE

− d
dt
at(y;X, u) = at(y;X, u)

∑
z ̸=Xt

(
ubase
t

(
1− ut

F(ut)

)
+ utlog

ut

F(ut)

)
(z,Xt)

−
∑
z ̸=y

(
ubase
t − ut + utlog

ut

F(ut)

)
(z, y)

 (20)

with the terminal condition a1(y;X, u) = e−g(y)+g(X1).

Intuitively, the discrete basic adjoint at(y;X, u) provides an unbiased estimator of e−Jt(y;u)+Jt(x;u)

under the distribution pu, which, upon choosing a proper matching function Dϕ, instantiates the
mapping F(u) = Epu [ubase

t (y, x)at(y;X, u)|Xt = x]. In other words, the optimization in (19) can
be understood as the variational form of the fixed-point equation, u⋆ = F(u⋆), in Lemma 3.1.

In practice, though, at(y;X, u) is computationally intractable, as the dynamics in (20) involve eval-
uation of the mapping F(u)—and hence Jt(·;u) due to (18)—which is what we wish to estimate.
This contrasts with the basic adjoint in continuous domains (Domingo-Enrich et al., 2025, Equation
30), which, despite computationally expansive, still remains tractable. Nevertheless, observing that
all intractable terms in (20) vanish at u := u⋆, the discrete basic adjoint on the optimal distribution
at(y;X, u⋆) becomes tractable and, as shown below, recovers the discrete adjoint ãt(y;X).
Corollary 3.3 (Discrete adjoint). At u := u⋆, the dynamics of discrete basic adjoint simplify to

− d
dt
at(y;X, u⋆) =

∑
z

ubase
t (z, y)at(z;X, u⋆), a1(y;X, u⋆) = e−g(y)+g(X1) (21)

which coincide with the dynamics of discrete adjoint in (8). That is, by the uniqueness of ODE
solutions, we have that at(y;X, u⋆) = ãt(y;X).

Finally, the objective in (10) can be readily recovered from (19) by setting ū := u⋆.

4 RELATED WORKS

Entropy-regularized reward optimization. DDPO (Black et al., 2023) and DPoK (Fan et al.,
2023a) consider inference in discrete-time diffusion models as a Markov Decision Process, and
apply policy gradient approaches to (1). DRaFT (Clark et al., 2023) and AlignProp (Prabhudesai
et al., 2024) utilize reparameterization to do direct backpropagation in discrete-time. Adjoint Match-
ing (AM, Domingo-Enrich et al., 2025) and ELEGANT (Uehara et al., 2024b) consider entropy-
regularized optimization of continuous-time diffusion models, with path-wise KL regularization.
Unlike AM, ELEGANT learns both an altered drift as well as altered initial noise distribution.

Fine-tuning discrete models. Fine-tuning for discrete diffusion models is reviewed, albeit in dis-
crete time, in (Uehara et al., 2024a). Several methods—including D1 (Zhao et al., 2025), Diffu-
Coder (Gong et al., 2025), DRAKES (Wang et al., 2025), and SEPO (Zekri & Boullé, 2025)—adapt
policy gradient methods (Shao et al., 2024; Liu et al., 2025b) but many require approximations
due to intractable likelihoods or non-differentiable rewards. In contrast, SVDD (Li et al., 2024), a
value-based approach, estimates the value function via reward regression on model rollouts, while
Q♯ (Zhou et al., 2025) learns a parameterized reward distribution on rollouts. Rather than estimating
the value function directly, our DAM utilizes an estimator for the exponential value difference.

5 EXPERIMENTS

We validate the performance of DAM on two benchmarks: 2D synthetic examples with analytically
available optimal rates u⋆, and fine-tuning higher-dimensional reasoning datasets for diffusion-based
LLMs. In all cases, we consider masked-based CTMC models. Further details are in Appendix C.
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Figure 1: Synthetic Examples. We compare the empirical distributions of X1 generated by the base
model pbase

1 , the ground-truth optimal model p⋆1, and four methods, including an ablation of DAM
trained with the discrete adjoint in (11) instead of (13). DAM visually aligns most closely with p⋆1.
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Figure 2: Convergence to Optimal p⋆ on Pinwheel. Convergence of DKL(p
⋆
t ||put ) at each jump de-

scribed in (22), where DAM exhibits stable convergence compared to other methods (left & middle).
Our improved discrete adjoint in (13) exhibits lower bias and variance compared to (11) (right).

5.1 SYNTHETIC EXAMPLES

Setup We consider two synthetic examples on a discrete state space X discrete = {m, 1, · · · , 91}2,
where each sample x ∈ X represents a 2-dimensional index on a 91-by-91 grid, and hence the
marginal distribution p(Xt) can be visualized as a 2D histogram. For masked-based CTMC models,
the generative processes simplify to two distinct jumps from the mask state X0 = (m,m),

(m,m)
first jump−→ (xi,m) or (m, xj)

second jump−→ (xi, xj), xi, xj ∈ {1, · · · , 91} (22)

To mimic the fine-tuning setup, we design a terminal loss g(x) such that the optimal distribution
p⋆1(X1) ∝ pbase

1 (X1)e
−g(X1) upweights or downweights certain regions, as shown in Figure 1. No-

tably, the relatively low dimensionality of the problems enables exact computation of the optimal
rate u⋆ and its induced optimal distribution p⋆, allowing us to compare convergence between our
DAM and other baselines, specifically D1 (Zhao et al., 2025) and SVDD (Li et al., 2024).

Results Figure 1 presents the results on synthetic examples, where we compare the 2D histograms
of samples X1 ∼ p(X1) generated by our DAM, its ablation, and other baselines. On both exam-
ples, namely Checkerboard and Pinwheel, DAM remains visually closest to the optimal distribution,
demonstrating its effectiveness in solving the entropy-regularized optimization in (1). This is further
confirmed quantitatively by Figure 2, where DAM converges stably to the optimal distribution for
both jumps characterized in (22). In contrast, other fine-tuning methods such as D1 and SVDD tend
to plateau without converging to p⋆, likely due to the heavy approximation imposed during training.
Notably, while both (11) and (13) provide theoretically sound estimators of the discrete adjoint, the
latter exhibits significantly lower bias and variance. As such, we adopt (13) for all remaining tasks.

5.2 MATHEMATICAL REASONING TASKS

Setup We consider three standard mathematical reasoning tasks: GSM8K (Cobbe et al., 2021), a
dataset consisting of 8.5K grade-school math problems, MATH500 (Lightman et al., 2023), which
contains 500 high-school competition math problems, and Countdown, a combinatorial arithmetic
game on a given set of three numbers. Since D1 (Zhao et al., 2025) represents the current state-
of-the-art method for fine-tuning masked CTMC models on these reasoning tasks, we adopt their

8
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Table 1: Performance on Mathematical Reasoning Tasks. Across all three tasks, DAM achieves
higher test-time accuracy (Accu, %) and higher sub-rewards in (23) for fine-tuning the pretrained
LLaDA-8B-Instruct model. Best results are highlighted.

GSM8K MATH500 Countdown

Method Accu. rcorrect rformat Accu. rcorrect rformat Accu. rcorrect rformat

LLaDA-8B-Instruct 68.61 1.37 1.46 28.80 0.58 0.72 34.77 0.31 0.10

with D1 (Zhao et al., 2025) 75.59 1.51 1.74 31.20 0.62 0.73 43.75 0.39 0.10

with DAM (Ours) 75.74 1.52 1.86 32.60 0.65 0.73 60.16 0.54 0.10

Table 2: Generated Samples on GSM8K from the base model and two fine-tuned models given the
same unseen prompt. Correct and wrong answers are colored. More samples are in Appendix C.3.

Prompt: Kenny is selling his Pokemon cards to buy a ticket to an amusement park, which costs $100. He
has a collection of cards and plans to sell them for $1.5 each. He keeps 1/3 of them and gets to go to the
amusement park with $50 in spending cash. How many cards did he start with?
Answer: 150

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
Kenny keeps 1/3 of his cards, so
he sells 2/3 of them. He selling
2/3 of his cards for $1.5 each,
so he earns (2/3) * $1.5 = $10
from selling them. He also $50
in spending cash, so he has $10
+ $50 = $60. Since the ticket
costs $100, he started with 60/2
= 30 cards.</reasoning>
<answer> 30 </answer>

<reasoning>
Kenny needs to raise $100 +
$50 = $150. He keeps 1/3 of his
cards, so he sells 2/3 of them.
Each card sells for $1.5, so he
sells $150 / $1.5 = 100 cards.
Therefore, he started with 100 /
(2/3) = 150 cards.</reasoning>
<answer> 150 </answer>

<reasoning>
Kenny needs $100 - $50 = $50.
At $1.5 per card, he needs to
sell $50 / $1.5 = 33 cards. Since
he keeps 1/3 of them, he sells
1/3 * 33 = 11 cards to make the
necessary amount.</reasoning>
<answer> 33 </answer>

experimental setups. Specifically, we employ LLaDA-8B-Instruct (Nie et al., 2025), without super-
vised finetuning, as the base CTMC model and consider the terminal loss g(·) below:

g(x) := −r(x) where r(x) = rcorrect(x) + rformat(x) (23)

comprises two sub-reward functions, rcorrect and rformat, that reward the correctness and formatting of
the generated samples. For each method, we fine-tune a separate CTMC model on each task with a
generation length of 128. Following D1, we evaluate the final checkpoint with zero-shot prompting
and adopt the same decoding scheme from Nie et al. (2025). Further details are in Appendix C.2.

Results Table 1 summarizes the results on the reasoning tasks. Across all three tasks, DAM con-
sistently achieves higher test-time accuracy as well as higher scores on each sub-reward compared
to D1, showcasing its potential for fine-tuning moderate-sized diffusion-based LLMs. While DAM
clearly outperforms D1 on Countdown, the performance gaps narrows on GSM8K and MATH500,
suggesting that the assumptions made by D1 may be reasonably effective for these tasks. Adapting
such approximations for DAM—which is designed for more general problems—remains a promis-
ing future direction. Finally, Table 2 compares samples generated by different models conditioned
on the same unseen prompt, where the DAM-fine-tuned model (middle column) successfully reasons
and generates the correct answer. Overall, these results highlight the effectiveness of DAM in solv-
ing entropy-regularized reward optimization yet potentially for a broader class of CTMC models,
which may be beneficial for more advanced CTMC models (Havasi et al., 2025).

6 CONCLUSION AND LIMITATIONS

We introduced DAM, an adjoint-based fine-tuning method for discrete generative models formulated
by CTMC. DAM is derived through a rigorous statistical framework that can be easily applied to
other model classes. We demonstrate effectiveness of DAM in solving various entropy-regularized
optimization problems. Applying DAM to non-masked CTMC’s presents an interesting future work.
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good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn
Kim. Discrete Diffusion Schr\”odinger Bridge Matching for Graph Transformation, October
2024. URL http://arxiv.org/abs/2410.01500. arXiv:2410.01500 [cs].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso Bian-
calani, Shuiwang Ji, Aviv Regev, Sergey Levine, and Masatoshi Uehara. Derivative-Free Guid-
ance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding, October
2024. URL http://arxiv.org/abs/2408.08252. arXiv:2408.08252 [cs].

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos A Theodorou. Deep generalized
Schrödinger bridge. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Guan-Horng Liu, Jaemoo Choi, Yongxin Chen, Benjamin Kurt Miller, and Ricky TQ Chen. Adjoint
Schrödinger Bridge Sampler. In Advances in Neural Information Processing Systems (NeurIPS),
2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https:
//arxiv.org/abs/2503.20783.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

11

http://arxiv.org/abs/2410.01500
http://arxiv.org/abs/2408.08252
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783


Published as a conference paper at ICLR 2026

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Le-Tuyet-Nhi Pham, Dario Shariatian, Antonio Ocello, Giovanni Conforti, and Alain Oliviero Dur-
mus. Discrete Markov probabilistic models: An improved discrete score-based framework with
sharp convergence bounds under minimal assumptions. In Aarti Singh, Maryam Fazel, Daniel
Hsu, Simon Lacoste-Julien, Felix Berkenkamp, Tegan Maharaj, Kiri Wagstaff, and Jerry Zhu
(eds.), Proceedings of the 42nd International Conference on Machine Learning, volume 267 of
Proceedings of Machine Learning Research, pp. 49195–49258. PMLR, 13–19 Jul 2025. URL
https://proceedings.mlr.press/v267/pham25a.html.

Alexey Piunovskiy and Yi Zhang. Continuous-time markov decision processes. Probability Theory
and Stochastic Modelling, 2020.

Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
image diffusion models with reward backpropagation, 2024. URL https://arxiv.org/
abs/2310.03739.

L Chris G Rogers and David Williams. Diffusions, Markov processes and martingales: Volume 2,
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A ADDITIONAL DISCUSSION & DERIVATION

A.1 ENTROPY-REGULARIZED OPTIMIZATION

We provide additional clarification on how the memoryless condition in (24) leads to the analytic
expression of the optimal solution in (2).

pbase(X1|X0)
memoryless

:= pbase(X1) (24)

First, notice that the entropy-regularized objective in (1) can be reformulated as:

DKL(p
u(X)||pbase(X)) + Ep(X) [g(X1)]

= DKL

(
p(X0)||pbase(X0)

)
+ Ep(X0)

[
DKL

(
p(X|X0)||pbase(X|X0)

)
+ Ep(X|X0) [g(X1)]

]
= DKL

(
p(X0)||pbase(X0)

)
+ Ep(X0)

[
DKL

(
p(X|X0)||pbase(X|X0)e

−g(X1)
)]

(25)

Minimizing (25) w.r.t. p yields

p⋆(X|X0) =
1

Z(X0)
pbase(X|X0)e

−g(X1), p⋆(X0) = pbase(X0) (26)

where Z(X0) is the normalization term defined by

Z(X0) :=

∫
pbase(X|X0)e

−g(X1)dX =

∫
pbase(X1|X0)e

−g(X1)dX1 (27)

That is, the optimal solution, p⋆(X) = p⋆(X|X0)p
⋆(X0), follows the form

p⋆(X) = pbase(X)e−g(X1)−logZ(X0) (28)

With the memoryless condition in (24), the normalization term becomes a constant, Z(X0) = Z,
and thus (28) reduces to the analytic optimal solution presented in (2).

A.2 CONTINUOUS-TIME MARKOV CHAIN (CTMC)

Interpreting the transition rate Recall from (4) that a CTMC process is fully characterized by
its transition rate:

ut(y, x) := lim
∆t→0

p(Xt+∆t = y|Xt = x)− δx(y)

∆t
(29)

which by construction satisfies the rate conditions:

ut(y, x) ≥ 0 for all y ̸= x, and ut(x, x) = −
∑
y ̸=x

ut(y, x) (30)

It is convenience to further define two mathematical objects from the transition rate ut(y, x), namely
the jump rate λt(x) and the jump target probability Qt(y|x):

λt(x) :=
∑
y ̸=x

ut(y, x) = −ut(x, x), Qt(y|x) :=
ut(y, x)

λt(x)
∀y ̸= x (31)

Intuitively, λt(x) = lim∆t→0
Pr[jump occurs at t+∆t|Xt=x]

∆t quantifies the rate at which the jump occurs,
whereas Qt(y|x) is the probability to jump from x to y ̸= x. Note that

∑
y ̸=x Qt(y|x) = 1 is by

construction normalized. This leads to the following interpretation:

ut(y, x) = λt(x)︸ ︷︷ ︸
how often to jump

Qt(y|x)︸ ︷︷ ︸
where to jump

∀y ̸= x, ut(x, x) = −λt(x) (32)
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The rate conditions (30) yield a useful result that will become helpful in later derivation:
Lemma A.1. Given a valid transition rate ut(y, x) satisfying (30), it holds for all f(x) that∑

y

ut(y, x)f(y) =
∑
y ̸=x

ut(y, x) (f(y)− f(x)) (33)

Proof.∑
y

ut(y, x)f(y) =
∑
y ̸=x

ut(y, x)f(y) + ut(x, x)f(x) =
∑
y ̸=x

ut(y, x)f(y)−
∑
y ̸=x

ut(y, x)f(x)

Kolmogorov equations for CTMC The two most important equations that characterize the prob-
ability evolution of CTMC processes are, respectively, the Kolmogorov Forward Equation (KFE),
which describes the forward dynamics of the conditional distribution for any t > s,

∂tpt|s(y|x) =
∑
z∈X

ut(y, z)pt|s(z|x) (34)

and the Kolmogorov Backward Equation (KBE), which describes the backward dynamics:

−∂spt|s(y|x) =
∑
z∈X

pt|s(y|z)us(z, x) (35)

Note that one can recover Continuity Equation—the dynamics of marginal distribution—by taking
expectation over ps(x) in KFE (34):

∂tpt(y) = ∂t

(∫
pt|s(y|x)ps(x)dx

)
=
∑
z

ut(y, z)

(∫
pt|s(z|x)ps(x)dx

)
=
∑
z

ut(y, z)pt(z)

KL divergence between CTMC Given two CTMC processes pu(X) and pbase(X) with the same
initial distribution, their KL divergence can be expressed with their transition rates (Kim et al., 2024;
Shaul et al., 2024):

DKL(p
u(X)||pbase(X)) =

∫ 1

0

Epu
t (Xt)

∑
y ̸=Xt

(
ubase
t − ut + ut log

ut

ubase
t

)
(y,Xt)

 dt (36)

which, despite compactly expressed, remains difficult to interpret. The following lemma provides an
alternative perspective by decomposing (36) into two components, similar to (32): one correspond-
ing to the decision of how often to jump, and the other to the choice of where to jump.
Lemma A.2 (Interpretation of CTMC’s KL divergence). Let pu and pbase be two CTMC distributions
characterized respectively by their transition rates ut(y, x) and ubase

t (y, x):

∀y ̸= x, ut(y, x) = λu
t (x)Q

u
t (y|x), ubase

t (y, x) = λbase
t (x)Qbase

t (y|x)

where λt(x) and Qt(y|x) are their jump rates and jump target probabilities, c.f. (31). Then, the KL
divergence in (36) can be decomposed into

DKL(p
u(X)||pbase(X)) =

∫ 1

0

Epu
t (Xt)

[
λu
t

(
DKL(λ

u
t ||λbase

t ) + DKL(Q
u
t ||Qbase

t )
)]

dt (37)

where DKL(λ
u
t ||λbase

t ) and DKL(Q
u
t ||Qbase

t ) are, respectively, standard KL divergences for exponen-
tial and discrete distributions:

DKL

(
λu
t (x)||λbase

t (x)
)
= log

λu
t (x)

λbase
t (x)

+
λbase
t (x)

λu
t (x)

− 1,

DKL

(
Qu

t (·|x)||Qbase
t (·|x)

)
=
∑
y ̸=x

Qu
t (y|x) log

Qu
t (y|x)

Qbase
t (y|x)

.
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Proof. We first make the last term in (36) more explicit as∑
y ̸=x

ut(y, x) log
ut(y, x)

ubase
t (y, x)

=
∑
y ̸=x

λu
t (x)Q

u
t (y|x) log

λu
t (x)Q

u
t (y|x)

λbase
t (x)Qbase

t (y|x)

= λu
t (x) log

λu
t (x)

λbase
t (x)

+ λu
t (x)

∑
y ̸=x

Qu
t (y|x) log

Qu
t (y|x)

Qbase
t (y|x)

= λu
t (x) log

λu
t (x)

λbase
t (x)

+ λu
t (x)DKL(Q

u
t (·|x)||Qbase

t (·|x)) (38)

Combing the first two terms in (38) with the leftover term in (36),∑
y ̸=x

ubase
t (y, x)− ut(y, x) + λu

t (x) log
λu
t (x)

λbase
t (x)

= λu
t (x)DKL(λ

u
t (x)||λbase

t (x)) (39)

yields the desired result.

Remark (Interpretation of cost-to-go Jt in (17)). From (36), the integration of Jt(x;u) in (17) is
exactly the KL divergence between the CTMC’s pu and pbase over the interval [t, 1],

Jt(x;u) = DKL(p
u(X[t,1]|Xt = x)||pbase(X[t,1]|Xt = x)) + Epu(X1|Xt=x) [g(X1)]

Estimating the probability ratio between CTMC’s To estimate the probability ratio between
CTMC’s, we invoke their corresponding Radon-Nikodým derivative from, e.g., (Zhu et al., 2025):

log
pu(X)

pbase(X)
=

∫ 1

0

∑
y ̸=Xt

(
ut(y,Xt)− ubase

t (y,Xt)
)

dt+
∑

t:Xt− ̸=Xt

log
ut(Xt, Xt−)

ubase
t (Xt, Xt−)

(40)

which remains tractable given a trajectory X ∼ pu. Note that when pu and pbase are specialized to
masked diffusion models with the following transition rates,

∀y ̸= x, ut(y, x) = λbase
t (x)Qu(y|x), ubase

t (y, x) = λbase
t (x)Qbase(y|x)

the integration in (40) vanishes and the Radon-Nikodým derivative simplifies to the log-probability
ratio of between two discrete-time Markov processes:

log
pu(X)

pbase(X)
=

∑
t:Xt− ̸=Xt

log
Qu(Xt|Xt−)

Qbase(Xt|Xt−)
(41)

A.3 ENTROPY-REGULARIZED OPTIMIZATION FOR CTMC

Dynamics of value function Value function—as the optimal cost-to-go functional—plays a key
role throughout the derivation of the discrete adjoint in Theorem 2.2. To ease later derivation, we
provide their dynamics in the following lemma.
Lemma A.3 (Dynamics of value function). Consider the entropy-regularized optimization in (1).
Define the value function as

Vt(x) := − log
∑
z∈X

pbase
1|t (z|x)e

−g(z), V1(x) = g(x) (42)

The dynamics of value function follow:

∂tVt(x) =
∑
z

ubase
t (z, x)e−Vt(z)+Vt(x) =⇒ ∂te

−Vt(x) = −
∑
z

ubase
t (z, x)e−Vt(z) (43)

Proof. Straightforward calculation yields

∂tVt(x) = −
∑

z ∂tp
base
1|t (z|x)e

−g(z)∑
z p

base
1|t (z|x)e−g(z)

16
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= eVt(x)
∑
z

∑
y

ubase
t (y, x)pbase

1|t (z|y)e
−g(z) by (35)

= eVt(x)
∑
y

ubase
t (y, x)e−Vt(y)

=⇒ ∂te
−Vt(x) = −e−Vt(x)∂tVt(x) = −

∑
y

ubase
t (y, x)e−Vt(y)

It is convenience to further rewrite the dynamics ∂tVt(x) in terms of the jump rate. Using the fact
that u⋆

t (z, x) = ubase
t (z, x)e−Vt(z)+Vt(x) for all z ̸= x, we can rewrite (43) by

∂tVt(x) =
∑
z

ubase
t (z, x)e−Vt(z)+Vt(x) =

∑
z ̸=x

u⋆
t (z, x) + ubase

t (x, x)

That is, the dynamics of value function can be compactly presented as jump rate differences:

∂tVt(x) = λ⋆
t (x)− λbase

t (x) (44)

Optimal transition rate We provide the derivation of the optimal transition rate u⋆
t (y, x) in (6).

The following lemma generalizes the initial-point conditional distribution p1|0 in (26) to arbitrary
time steps pt|s, s < t, from which the optimal transition rate can be easily obtained.

Lemma A.4 (Optimal conditional distribution). For any distinct time steps (s, t) such that 0 ≤ s <
t ≤ 1, the optimal conditional distribution to the entropy-regularized optimization in (1) satisfies

p⋆t|s(y|x) = pbase
t|s (y|x)e−Vt(y)+Vt(x) (45)

Proof. We first compute the optimal joint distribution p⋆(Xt = y,Xs = x):

p⋆(Xt = y,Xs = x)

=
∑
X

p⋆(X, Xt = y,Xs = x)

=
∑
X

pbase(X, Xt = y,Xs = x)e−g(X1)−logZ(X0) by (28)

=
∑

X0,X1

pbase
1|t (X1|y)pbase

t|s (y|x)pbase
s,0 (x,X0)e

−g(X1)e− logZ(X0) by Markoviana of pbase

= e−Vt(y)pbase
t|s (y|x)

∑
X0

pbase
s,0 (x,X0) (46)

Likewise, the optimal marginal distribution p⋆s(x) can be obtained by

p⋆s(x) =
∑
X

p⋆(X, Xs = x)

=
∑
X

pbase(X, Xs = x)e−g(X1)−logZ(X0) by (28)

=
∑

X0,X1

pbase
1|s (X1|x)pbase

s,0 (x,X0)e
−g(X1)e− logZ(X0) by Markoviana of pbase

= e−Vs(x)
∑
X0

pbase
s,0 (x,X0) (47)

Combining Equations (46) and (47) yields the desired result.

Given Lemma A.4, we can derive the optimal transition rate u⋆ by applying (29):

u⋆
s(y, x) :=

[
∂tp

⋆
t|s(y|x)

]
t=s

17
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=
[
∂t

(
pbase
t|s (y|x)e−Vt(y)+Vs(x)

)]
t=s

by (45)

=
[
∂t

(
pbase
t|s (y|x)

)
e−Vt(y)+Vs(x)

]
t=s

+
[
pbase
t|s (y|x)e−Vt(y)+Vs(x)∂t (−Vt(y))

]
t=s

= ubase
s (y, x)e−Vs(y)+Vs(x) − δx(y) · e−Vs(x)+Vs(x)∂tVs(x) by (34)

= ubase
s (y, x)e−Vs(y)+Vs(x) − δx(y) ·

∑
y

ubase
s (y, x)e−Vs(y)+Vs(x) by (43)

which recovers the same expression in (6), i.e.,

∀y ̸= x, u⋆
t (y, x) = ubase

t (y, x)e−Vt(y)+Vt(x) (48)

Note that, as expected, the optimal transition rate u⋆
s(y, x) satisfies the rate conditions (30)

u⋆
t (y, x) ≥ 0 for all y ̸= x, and

∑
y

u⋆
t (y, x) = 0 (49)

Dynamics of value function w.r.t. optimal transition rate While it is well-known that the dy-
namics of value function depend on the base transition rate ubase, as shown in Lemma A.3, for
CTMC processes, these dynamics can alternatively be reformulated in terms of the optimal rate u⋆.
This is readily hinted in (44), where ∂tVt(x) = λ⋆

t (x) − λbase
t (x) is simply the difference between

the optimal and base jump rates. The following lemma formalizes this observation.
Lemma A.5 (Dynamics of value function w.r.t. u⋆). Let Vt(x) be the same value function in (42).
The dynamics of Vt(x) given the optimal transition rate u⋆ in (48) follow:

∂tVt(x) = −
∑
z

u⋆
t (z, x)e

Vt(z)−Vt(x) =⇒ ∂te
Vt(x) = −

∑
z

u⋆
t (z, x)e

Vt(z) (50)

Proof.

∂tVt(x) = λ⋆
t (x)− λbase

t (x)

= −u⋆
t (x, x)−

∑
z ̸=x

ubase
t (z, x)

= −u⋆
t (x, x)−

∑
z ̸=x

u⋆
t (z, x)e

Vt(z)−Vt(x)

= −
∑
z

u⋆
t (z, x)e

Vt(z)−Vt(x)

which implies that

∂te
Vt(x) = eVt(x)∂tVt(x) = −eVt(x)

∑
z

u⋆
t (z, x)e

Vt(z)−Vt(x) = −
∑
z

u⋆
t (z, x)e

Vt(z)

Lemma A.6. The denominator of the discrete-adjoint is an estimator for eVt(x), i.e.,

eVt(x) = Ep⋆
1|t(X1|x)[e

g(X1)]. (51)

Proof. Invoking Dynkin’s formula Lemma 2.1 with ft(x) = eVt(x) and u := u⋆, the integrand
simplifies to

(∂tft)(Xt) +
∑
z

u⋆
t (z,Xt)ft(z) = ∂te

−Vt(y) +
∑
z

u⋆
t (z,Xt)e

Vt(z)

= 0. by (50)

Since V1(x) = g(x) and hence f1(x) = eg(x), we have deduced that

eVt(x) = Ep⋆(X1|Xt=x)

[
eg(X1)

]
. (52)
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A.4 HAMILTON-JACOBI-BELLMAN EQUATION

The dynamics of the value function (43) can be rewritten to recover the same form as the Hamilton-
Jacobi-Bellman from Pham et al. (2025, Equation 85).
Proposition A.7 (Hamilton-Jacobi-Bellman equation). The dynamics of the value function Vt(x)
can be written as

∂tVt(x) = λbase(x)
(∑

z ̸=x

Qbase
t (z|x)e−Vt(z)+Vt(x) − 1

)
. (53)

Proof. Starting from (43):

∂tVt(x) =
∑
z

ubase
t (z, x)e−Vt(z)+Vt(x), (54)

= ubase
t (x, x) +

∑
z ̸=x

ubase
t (z, x)e−Vt(z)+Vt(x), (55)

= ubase
t (x, x) + ubase

t (x, x)
∑
z ̸=x

Qbase
t (z|x)e−Vt(z)+Vt(x), (56)

= ubase
t (x, x) + ubase

t (x, x)
∑
z ̸=x

Qbase
t (z|x)e−Vt(z)+Vt(x), (57)

= λbase
t (x)

(∑
z ̸=x

Qbase
t (z|x)e−Vt(z)+Vt(x) − 1

)
. (58)

A.5 BIAS AND VARIANCE COMPARISON BETWEEN (11) AND (13) ON A TOY EXAMPLE

We now quantify the difference in bias and variance between the original discrete adjoint and (11)
and the improved discrete adjoint using importance weighting (13).

We consider a sequence length of N = 1 and a vocabulary size of M = 3 with X =
{m, zcorrect, zwrong}. We consider an indicator function loss that penalizes wrong answers, i.e.,

g(z) = −50⊮{z = zcorrect}. (59)
Let the base distribution pbase

1|t be

pbase
1|t (z) =

{
θ, z = zcorrect,

1− θ, z = zwrong
(60)

Then, the optimal distribution p⋆1|t is

p⋆1|t(z|m) =
pbase
1|t (z|m)e−g(z)∑

z′ pbase
1|t (z

′|m)e−g(z′)
(61)

=


θe50

θe50 + (1− θ)
, z = zcorrect,

1− θ

θe50 + (1− θ)
, z = zwrong.

(62)

If θ is not too small, then p⋆1|t(zcorrect|m) ≈ 1.

We consider just the “denominator” part of (11) and (13), as the “numerator” is the same in both
cases. In our setting, the true value of the denominator is

Ep⋆
1|t(X1|Xt=m)[e

g(X1)] = p⋆1|t(zcorrect|m)e−g(zcorrect) + p⋆1|t(zwrong|m)e−g(zwrong), (63)

=
1

θe50 + (1− θ)
. (64)

Let the current model distribution pu1|t(z|m) be

pu1|t(z|m) =

{
ϕ, z = zcorrect,

1− ϕ, z = zwrong
(65)

19



Published as a conference paper at ICLR 2026

Bias and Variance of Original Discrete Adjoint Let X(1)
1 , . . . , X

(N)
1 ∼ p⋆1|t(X1|Xt = m) be N

i.i.d. samples from the model distribution pu1|t. We follow the original AM recipe and compute (11)
using these model samples. This gives us the following N -sample Monte-Carlo estimator for the
denominator of (11):

Ep⋆
1|t(X1|Xt=m)[e

g(X1)] ≈ Epu
1|t(X1|Xt=m)[e

g(X1)] (66)

≈ 1

N

N∑
i=1

eg(X
(i)
1 ). (67)

We first compute the mean

E

[
1

N

N∑
i=1

eg(X
(i)
1 )

]
= Epu

1|t(X1|m)[e
g(X1)]

= ϕe−50 + (1− ϕ)

and variance

Var

[
1

N

N∑
i=1

eg(X
(i)
1 )

]
=

1

N
Varpu

1|t(X1|m)[e
g(X1)]

=
1

N

(
Epu

1|t(X1|m)[e
2g(X1)]− Epu

1|t(X1|m)[e
g(X1)]2

)
=

1

N

(
ϕe−100 + (1− ϕ)− (ϕe−50 + (1− ϕ))2

)
,

=
1

N
ϕ(1− ϕ)(e−50 − 1)2.

The bias is then

Bias of (11) = E

[
1

N

N∑
i=1

eg(X
(i)
1 )

]
− Ep⋆

1|t(X1|Xt=m)[e
g(X1)],

=
(
ϕe−50 + (1− ϕ)

)
− 1

θe50 + (1− θ)
,

≈ (1− ϕ)− 1

θe50
,

≈ 1− ϕ. (68)

and the variance can be approximated as

Var

[
1

N

N∑
i=1

eg(X
(i)
1 )

]
=

1

N
ϕ(1− ϕ)(e−50 − 1)2,

≈ 1

N
ϕ(1− ϕ)(e−50)2. (69)

where we have used the approximations that ϕe−50 + (1 − ϕ) ≈ 1 − ϕ and 1
θe50+(1−θ) ≈

1
θe50 ,

which hold when ϕ is not too big and θ is not too small.

Bias and Variance of Importance-weighted Discrete Adjoint The denominator part of (13)
takes the form(

Epu
1|t(X1|Xt=m)

[
pbase
1|t (X1|Xt = m)

pu1|t(X1|Xt = m)
e−g(X1)

])−1

=
(
Epu

1|t(X1|Xt=m) [w(X1)]
)−1

≈
(

1

N

N∑
i=1

w(X
(i)
1 )︸ ︷︷ ︸

:=SN

)−1

.
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where we have defined for convenience

w(X1) :=
pbase
1|t (X1|Xt = m)

pu1|t(X1|Xt = m)
e−g(X1). (70)

Evaluating the mean and variance of SN first,
E[SN ] = Epu

1|t(X1|m)[w(X1)]

= Epbase
1|t(X1|m)[e

−g(X1)]

= θe50 + (1− θ).

and

Var[SN ] =
1

N
Varpu

1|t(X1|m)[w(X1)]

=
1

N

(
Epu

1|t(X1|m)[w(X1)
2]− Epu

1|t(X1|m)[w(X1)]
2
)

=
1

N

(
Epbase

1|t(X1|m)

[
pbase
1|t (X1|Xt = m)

pu1|t(X1|Xt = m)
e−2g(X1)

]
− Epbase

1|t(X1|m)[e
−g(X1)]2

)
=

1

N

(
θ
θ

ϕ
e100 + (1− θ)

1− θ

1− ϕ
− (θe50 + (1− θ))2

)
,

=
1

N

(
θ2e100(

1

ϕ
− 1) + (1− θ)2(

1

1− ϕ
− 1)− 2θ(1− θ)e50

)
.

Then, using the Delta method, we can approximate the mean and variance of S−1
N as

E[S−1
N ] ≈ E[SN ]−1 +

Var[SN ]

E[SN ]3
,

=
1

θe50 + (1− θ)
+

1

N

θ2e100( 1ϕ − 1) + (1− θ)2( 1
1−ϕ − 1)− 2θ(1− θ)e50

(θe50 + (1− θ))3
.

and

Var[S−1
N ] ≈ Var[SN ]

E[SN ]4
,

=
1

N

θ2e100( 1ϕ − 1) + (1− θ)2( 1
1−ϕ − 1)− 2θ(1− θ)e50

(θe50 + (1− θ))4
.

The bias is then
Bias of (13) = E[S−1

N ]− Ep⋆
1|t(X1|Xt=m)[e

g(X1)],

=
1

N

θ2e100( 1ϕ − 1) + (1− θ)2( 1
1−ϕ − 1)− 2θ(1− θ)e50

(θe50 + (1− θ))3
,

≈ 1

N

θ2e100( 1ϕ − 1)

θ3(e50)3
,

=
1

N

1− ϕ

ϕθ
e−50. (71)

while we can approximate the variance as

Var[SN ] ≈ 1

N

θ2e100( 1ϕ − 1) + (1− θ)2( 1
1−ϕ − 1)− 2θ(1− θ)e50

(θe50 + (1− θ))4
,

≈ 1

N

θ2e100( 1ϕ − 1)

θ4(e50)4
,

=
1

N

1− ϕ

ϕθ2
(e−50)2. (72)

Comparing the bias (68) and (71), we see that the bias of importance-weighted discrete adjoint is
much smaller than that of the orignal discrete adjoint since the bias from (71) is scaled by e−50. For
the variances, both variances (69) and (72) are similar. This aligns with empirical results in Figure 2.
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B PROOFS

Lemma 2.1 (Dynkin’s formula). For a given function ft(x) and a CTMC model pu, it holds that

ft(x) = Epu(X|Xt=x)

[
f1(X1)−

∫ 1

t

(
(∂τfτ )(Xτ ) +

∑
y

uτ (y,Xτ )fτ (y)

)
dτ

]
. (7)

Proof. Dynkin’s Formula (Piunovskiy & Zhang, 2020, Theorem 2.4.1) states that given a function
f(t, x) ≡ ft(x), it holds that

EX [f1(X1)] = f0(X0) + EX

[∫ 1

0

(Af)(t,Xt)dt
]

(73)

where A is the infinitesimal generator of the Feller process X = (Xt)t∈[0,1] defined as

(Af)(s, x) = lim
t↓s

EX [ft(Xt)|Xs = x]− fs(x)

t− s
(74)

For a CTMC X ∼ pu with the rate ut(y, x), we have that

(Af)(s, x)

= lim
t↓s

EX [ft(Xt)|Xs = x]− fs(x)

t− s

= lim
t↓s

∑
y pt|s(y|x) (ft(y)− fs(x))

t− s

= lim
t↓s

∑
y pt|s(y|x) (ft(y)− fs(y))

t− s
+ lim

t↓s

∑
y pt|s(y|x) (fs(y)− fs(x))

t− s

= lim
t↓s

∑
y pt|s(y|x) (ft(y)− fs(y))

t− s
+

d
dt

∑
y

pt|s(y|x)fs(y)−
d
dt

∑
y

pt|s(y|x)fs(x) (75)

The first term simplifies as

lim
t↓s

∑
y pt|s(y|x) (ft(y)− fs(y))

t− s
=
∑
y

δx(y)∂tfs(y) = ∂tfs(x)

The second term simplifies as

d
dt

∑
y

pt|s(y|x)fs(y) =
∑
y

us(y, x)fs(y)

The third term simplifies as

d
dt

∑
y

pt|s(y|x)fs(x) = fs(x)
∑
y

us(y, x) = 0

Combined, (75) simplifies as

(Af)(s, x) = ∂tfs(x) +
∑
y

us(y, x)fs(y) (76)

Rearranging (73) with the above result (76) leads to the desired result:

f0(X0) = Epu(X|X0)

[
f1(X1)−

∫ 1

0

(
∂tft(Xt) +

∑
y

ut(y,Xt)ft(y)

)
dt

]
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Theorem 2.2 (Discrete adjoint—adjoint system for CTMC). Let u⋆
t (y, x) be the optimal rate to the

entropy-regularized problem in (1) for CTMC models. Then, it holds for all y ̸= x that

u⋆
t (y, x) = ubase

t (y,x)Ep⋆(X|Xt=x)

[
ã1(y;X) +

∫ 1

t

∑
z

ubase
τ (z,y)ãτ (z;X)dτ︸ ︷︷ ︸

=: ãt(y;X)

]
, ã1(y;X) = e−g(y)+g(X1)

(8)

where the discrete adjoint ãt(y;X) ∈ R>0 is an unbiased estimator of e−Vt(y)+Vt(x) under p⋆.

Proof. Invoking Lemma 2.1 with ft(x; y) := e−Vt(y)+Vt(x) and u := u⋆, the integrand simplifies to

(∂tft)(Xt) +
∑
z

u⋆
t (z,Xt)ft(z; y)

= eVt(Xt)∂te
−Vt(y) + e−Vt(y)

(
∂te

Vt(Xt) +
∑
z

u⋆
t (z,Xt)e

Vt(z)

)
= eVt(Xt)∂te

−Vt(y) by (50)

= −
∑
z

ubase
t (z, y)e−Vt(z)+Vt(Xt) by (43)

Since V1(x) = g(x) and hence f1(x; y) = e−g(y)+g(x), we have deduced that

e−Vt(y)+Vt(x) = Ep⋆(X|Xt=x)

[
e−g(y)+g(X1) +

∫ 1

t

(∑
z

ubase
τ (z, y)e−Vτ (z)+Vτ (Xτ )

)
dτ

]
(77)

Given an optimal trajectory X ∼ p⋆(·|Xt = x) starting from x at time t, one can estimate the
expectation by solving the following backward ODE:

d
dt
ãt(y;X) = −

∑
z

ubase
t (z, y)e−Vt(z)+Vt(Xt), ã1(y;X) = e−g(y)+g(X1) (78)

This implies that

e−Vt(y)+Vt(x) = Ep⋆(X|Xt=x) [ãt(y;X)] by (77)

= Ep⋆(X|Xt=x)

[
ã1(y;X) +

∫ 1

t

∑
z

ubase
τ (z, y)e−Vτ (z)+Vτ (Xτ )dτ

]

= Ep⋆(X|Xt=x)

[
ã1(y;X) +

∫ 1

t

∑
z

ubase
τ (z, y)Ep⋆(X̄|Xτ )

[
ãτ (y; X̄)

]
dτ

]
by (77)

= Ep⋆(X|Xt=x)

[
ã1(y;X) +

∫ 1

t

∑
z

ubase
τ (z, y)ãτ (y;X)dτ

]
(79)

which implies that the following ODE is equivalent to the one in (78) in expectation:

d
dt
ãt(y;X) = −

∑
z

ubase
t (z, y)ãt(z;X), ã1(y;X) = e−g(y)+g(X1) (80)

Finally, substituting (79) to (48) yield the desired result.

Proposition 2.3 (Analytic discrete adjoint). The discrete adjoint in (8) admits an analytic solution:

ãt(y;X1) =
∑
z

pbase
1|t (z|y)e

−g(z)+g(X1) (11)
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Proof. Rewrite Kolmogorov Backward Equation (35) in matrix form:

d
dt
P base
1|t = −U base

t P base
1|t =⇒ P base

1|t = exp

(∫ 1

t

U base
τ dτ

)
P base
1|1 = exp

(∫ 1

t

U base
τ dτ

)
(81)

where U base
t , P base

1|t ∈ R|X |×|X| are the matrices with ubase
t (z, y) and pbase

1|t (z, y) as their (z, y)-entries,
respectively. Likewise, rewrite the dynamics of discrete adjoint (80) in vector form:

d
dt
ãt(X) = −U base

t · ãt(X) (82)

where ãτ (X) ∈ R|X | is the discrete adjoint vector with ãτ (y;X) as its y-element. Since (82) is a
linear ODE, it admits an analytic solution:

ãt(X) = exp

(∫ 1

t

U base
τ dτ

)
ã1(X) = P base

1|t · ã1(X) (83)

where the last equality is due to (81). Expanding (83) for each element y yields the desired result.

Proposition 2.4 (Importance-weighted discrete adjoint). Consider the following estimator

ât(y;Z, {X(k)
1 }) :=

pbase
1|t(Z|y)

pu
1|t(Z|y)e

−g(Z) ·

(
1

K

K∑
k=1

pbase
1|t(X

(k)
1 |x)

pu
1|t(X

(k)
1 |x)

e−g(X
(k)
1 )

)−1

(13)

where {X(k)
1 } ∼ pu1|t(·|x) and Z ∼ pu1|t(·|y) are generated model samples. Then, ât is a consistent

estimator of the discrete adjoint, i.e., limK→∞ E[ât(y;Z, {X(k)
1 })] = Ep⋆

1|t(X1|x) [ãt(y;X1)].

Proof. Given the analytic discrete adjoint in (11), we can decompose the expectation of the discrete
adjoint into two separate expectations:

Ep⋆(X1|Xt=x) [ãt(y;X1)] = Ep⋆(X1|Xt=x)

[∑
z

pbase
1|t (z|y)e

−g(z)+g(X1)

]
by (11)

= Epbase
1|t(Z|y)

[
e−g(Z)

]
Ep⋆(X1|Xt=x)

[
eg(X1)

]
Both expectations can be estimated using model samples X ∼ pu. Specifically, applying importance
sampling to the first expectation yields

Epbase
1|t(Z|y)

[
e−g(Z)

]
= Epu

1|t(Z|y)

[
pbase
1|t(Z|y)

pu
1|t(Z|y)e

−g(Z)

]
(84)

As for the second expectation, we apply self-normalized importance sampling

Epbase
1|t(Z|y)

[
eg(X1)

]
= lim

K→∞
E
pu
1|t({X

(k)
1 }|x)

[
K∑

k=1

w(X
(k)
1 , x)∑

j w(X
(j)
1 , x)

eg(X
(k)
1 )

]
, (85)

with the unnormalized importance weight w(z, x) :=
p⋆
1|t(z|x)

pu
1|t(z|x)

=
pbase
1|t(z|x)

pu
1|t(z|x)

e−g(z)+Vt(x). This sim-

plifies the estimator in (85) to

K∑
k=1

w(X
(k)
1 , x)∑

j w(X
(j)
1 , x)

eg(X
(k)
1 ) =

K∑
k=1

pbase(X
(k)
1 |x)

pu(X
(k)
1 |x)

e−g(X
(k)
1 )

∑K
j=1

pbase(X
(j)
1 |x)

pu(X
(j)
1 |x)

e−g(X
(j)
1 )

eg(X
(k)
1 )

=

∑K
k=1

pbase(X
(k)
1 |x)

pu(X
(k)
1 |x)∑K

j=1
pbase(X

(j)
1 |x)

pu(X
(j)
1 |x)

e−g(X
(j)
1 )
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≈ 1

1
K

∑K
j=1

pbase(X
(j)
1 |x)

pu(X
(j)
1 |x)

e−g(X
(j)
1 )

(86)

where we use the fact that the numerator has expectation 1, i.e.,

E
pu
1|t({X

(k)
1 }|x)

[
pbase(X

(k)
1 |x)

pu(X
(k)
1 |x)

]
= 1

Combining (84) and (86) yields the desired result.

Proposition 2.5 (Masked optimal rate). Given the base rate ubase in (15), the optimal rate u⋆ satisfies

∀y ̸= x, u⋆
t (y, x) = λbase

t (x)Q⋆(y|x), Q⋆ ∈ Qmask (16)

Proof. This proof follows from the fact that the base rate ubase defined by (15) reduces its corre-
sponding CTMC to a discrete-time Markov process in which exactly N jumps occur over the time
interval from 0 to 1, with each jump unmasking one of the mask tokens in X0 = (m, · · · ,m). This
interpretation suggests that it suffices to define N marginal distributions (qn)Nn=1, where each qn(·)
corresponds to distribution of samples in which exactly n tokens are unmasked, and the conditional
distribution becomes time-invariant; that is,

pbase
t|s (y|x) = qbase

φ(y)|φ(x)(y|x) (87)

where we introduce the function φ : X → Z≥0 that counts the number of unmasked tokens in x.
With φ(·), we can rewrite the base jump target probability Qbase as

Qbase(y|x) = qbase
φ(x)+1|φ(x)(y|x) (88)

With the aforementioned reasoning, the value function defined in (42) becomes time-invariant:

Vt(x) = − log
∑
z

pbase
1|t (z|x)e

−g(z)

= − log
∑
z

qbase
N |φ(x)(z|x)e

−g(z) = V (x) (89)

and its negative exponential transform, e−V (x), exhibits a dynamic programming structure:

e−V (x) =
∑
z

qbase
N |φ(x)(z|x)e

−g(z) by (89)

=
∑
z

∑
y

qbase
N |φ(x)+1(z|y)q

base
φ(x)+1|φ(x)(y|x)e

−g(z)

=
∑
y

Qbase(y|x)
∑
z

qbase
N |φ(x)+1(z|y)e

−g(z) by (88)

=
∑
y

Qbase(y|x)e−V (y) (90)

This implies that the optimal rate preserves the same jump rate λbase
t (x) as the base rate and that the

the optimal jump target probability is also time-invariant, i.e.,

∀y ̸= x, u⋆
t (y, x) = ubase

t (y, x)e−V (y)+V (x) = λbase
t (x)Qbase(y|x)e−V (y)+V (x)︸ ︷︷ ︸

=:Q⋆(y|x)

Since the optimal jump target probability Q⋆(y|x) is a reweighted of the base jump target probability
Qbase ∈ Qmask, Q⋆(y|x) ≥ 0 if and only if y unmasks exactly one token of x. Furthermore, Q⋆(y|x)
is normalized by construction,∑

y

Q⋆(y|x) =
∑
y

Qbase(y|x)e−V (y)+V (x)

=

∑
y Q

base(y|x)e−V (y)

e−V (x)

= 1 by (90)

That is, Q⋆ ∈ Qmask and we conclude the proof.
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Lemma 3.1 (Fixed-point equation of u⋆). Let F be a mapping between the spaces of all possible
CTMC rates that satisfy the rate condition, i.e., Footnote 2. Specifically, for all y ̸= x, we have that

F : ut(y, x) 7→ ubase
t (y, x)e−Jt(y;u)+Jt(x;u) (18)

Then, the unique fixed point of the mapping F is the optimal rate u⋆
t (y, x), i.e., u⋆ = F(u⋆).

Proof. Recall the cost-to-go functional Jt(x;u) defined w.r.t. a CTMC with its rate ut(y, x):

Jt(x;u) := Epu(X|Xt=x)

∫ 1

t

∑
y ̸=Xτ

(
ubase
τ − uτ + uτ log

uτ

ubase
τ

)
(y,Xτ )dτ + g1(X1)

 (91)

We can rewrite Jt in dynamic programming form:

Jt(x;u) = E

∫ t+∆t

t

∑
y ̸=Xτ

(
ubase
τ − uτ + uτ log

uτ

ubase
τ

)
(y,Xτ )dτ

∣∣∣ Xt = x


+ E[Jt+∆t(Xt+∆t;u) | Xt = x]

=⇒ 0 =
E
[∫ t+∆t

t

∑
y ̸=Xτ

(
ubase
τ − uτ + uτ log

uτ

ubase
τ

)
(y,Xτ )dτ

∣∣∣ Xt = x
]

∆t

+
E[Jt+∆t(Xt+∆t;u) | Xt = x]− Jt(x;u)

∆t

Taking ∆t→ 0 yields

0 = (AJ)(t, x) +
∑
y ̸=x

(
ubase
t − ut + ut log

ut

ubase
t

)
(y, x) by (74)

−∂tJt(x;u) =
∑
y

ut(y, x)Jt(y;u) +
∑
y ̸=x

(
ubase
t − ut + ut log

ut

ubase
t

)
(y, x) by (76)

−∂tJt(x;u) =
∑
y ̸=x

ut(y, x) (Jt(y;u)− Jt(x;u)) +
∑
y ̸=x

(
ubase
t − ut + ut log

ut

ubase
t

)
(y, x)

by (33)

−∂tJt(x;u) =
∑
y ̸=x

(
ubase
t − ut + ut log

ut

F(ut)

)
(y, x) (92)

Now, consider a CTMC rate ūt(y, x) satisfying the self-consistency relation

∀y ̸= x, ūt(y, x) = ubase
t (y, x)e−Jt(y;ū)+Jt(x;ū) =⇒ ūt = F(ūt) (93)

One can check that when u := ū, the dynamics of cost-to-go Jt(x;u) in (92) reduces to the ones of
the value function in (43),

−∂tJt(x; ū) =
∑
y ̸=x

(
ubase
t − ūt + ūt log

ūt

F(ūt)

)
(y, x)

=
∑
y ̸=x

(
ubase
t (y, x)− ūt(y, x)

)
by (93)

= −ubase
t (x, x)−

∑
y ̸=x

ubase
t (y, x)e−Jt(y;ū)+Jt(x;ū) by (30) and (93)

= −
∑
y

ubase
t (y, x)e−Jt(y;ū)+Jt(x;ū)

That is, we have shown that any policy ū satisfying the self-consistency relation in (93) has its cost-
to-go Jt(x; ū) corresponding to the value function Vt(x). This implies that ū = u⋆ is the optimal
rate, and, by uniqueness, is the unique fixed point of (93).
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Theorem 3.2 (Discrete basic adjoint matching). For any Bregman divergence Dϕ, the unique criti-
cal point of the following matching objective is the optimal rate:

u⋆
t (y, x) = argmin

u
Epū(X|Xt=x)

[
Dϕ(ut(y, x), u

base
t (y, x)at(y;X, ū)

]
(19)

where ū = stopgrad(u) and at(y;X, u) is the discrete basic adjoint obeying a backward ODE

− d
dt
at(y;X, u) = at(y;X, u)

∑
z ̸=Xt

(
ubase
t

(
1− ut

F(ut)

)
+ utlog

ut

F(ut)

)
(z,Xt)

−
∑
z ̸=y

(
ubase
t − ut + utlog

ut

F(ut)

)
(z, y)

 (20)

with the terminal condition a1(y;X, u) = e−g(y)+g(X1).

Proof. Invoking Lemma 2.1 with ft(x; y, u) := e−Jt(y;u)+Jt(x;u)

e−Jt(y;u)+Jt(x;u) = Epu(X|Xt=x)

[
e−g(y)+g(X1) −

∫ 1

t

(
∂te

−Jt(y;u)+Jt(Xt;u)

+
∑
z

ut(z,Xt)e
−Jt(y;u)+Jt(z;u)

)
dτ

]
(94)

Expanding the first term of the integrand in (94) yields

∂te
−Jt(y;u)+Jt(Xt;u)

= e−Jt(y;u)+Jt(Xt;u) (−∂tJt(y;u) + ∂tJt(Xt;u))

= e−Jt(y;u)+Jt(Xt;u)

∑
z ̸=y

(
ubase
t − ut + utlog

ut

F(ut)

)
(z, y)

−
∑
z ̸=Xt

(
ubase
t − ut + utlog

ut

F(ut)

)
(z,Xt)

 by (92)

Likewise, expanding the second term of the integrand in (94) leads to∑
z

ut(z,Xt)e
−Jt(y;u)+Jt(z;u)

= e−Jt(y;u)+Jt(Xt;u)
∑
z

ut(z,Xt)e
−Jt(Xt;u)+Jt(z;u)

= e−Jt(y;u)+Jt(Xt;u)
∑
z ̸=Xt

ut(z,Xt)
(
e−Jt(Xt;u)+Jt(z;u) − e−Jt(Xt;u)+Jt(Xt;u)

)
by (33)

= e−Jt(y;u)+Jt(Xt;u)
∑
z ̸=Xt

(
ut

ubase
t

F(ut)
− ut

)
(z,Xt) by (18)

Combined, the integrand in (94) can be obtained by

∂te
−Jt(y;u)+Jt(Xt;u) +

∑
z

ut(z,Xt)e
−Jt(y;u)+Jt(z;u)

= e−Jt(y;u)+Jt(Xt;u)

∑
z ̸=y

(
ubase
t − ut + utlog

ut

F(ut)

)
(z, y)

−
∑
z ̸=Xt

(
ubase
t

(
1− ut

F(ut)

)
+ utlog

ut

F(ut)

)
(z,Xt)


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= e−Jt(y;u)+Jt(Xt;u)Gt(y,Xt;u)

where we shorthand

Gt(y,Xt;u) :=
∑
z ̸=y

(
ubase
t − ut + utlog

ut

F(ut)

)
(z, y)

−
∑
z ̸=Xt

(
ubase
t

(
1− ut

F(ut)

)
+ utlog

ut

F(ut)

)
(z,Xt) (95)

That is, we can reformulate (94) by

e−Jt(y;u)+Jt(x;u) = Epu(X|Xt=x)

[
e−g(y)+g(X1) −

∫ 1

t

e−Jτ (y;u)+Jτ (Xτ ;u)Gτ (y,Xτ ;u)dτ
]

Consequently, given a model trajectory X ∼ pu(·|Xt = x) starting from x at time t, one can
estimate the expectation by solving the following backward ODE:

d
dt
at(y;X, u) = e−Jt(y;u)+Jt(Xt;u)G(y,Xt;u) a1(y;X, u) = e−g(y)+g(X1) (96)

This implies that

e−Jt(y;u)+Jt(x;u) = Epu(X|Xt=x) [at(y;X, u)] (97)

= Epu(X|Xt=x)

[
a1(y;X, u)−

∫ 1

t

e−Jτ (y;u)+Jτ (Xτ ;u)Gτ (y,Xτ ;u)dτ
]

= Epu(X|Xt=x)

[
a1(y;X, u)−

∫ 1

t

Epu(X̄|Xτ )

[
aτ (y; X̄, u)

]
Gτ (y,Xτ ;u)dτ

]
= Epu(X|Xt=x)

[
a1(y;X, u)−

∫ 1

t

aτ (y;X, u)Gτ (y,Xτ ;u)dτ
]

That is, the following ODE is equivalent to the one in (96) in expectation:

d
dt
at(y;X, u) = at(y;X, u)G(y,Xt;u) a1(y;X, u) = e−g(y)+g(X1) (98)

which readily recovers the dynamics in (20).

Finally, let ūt(y, x) be the solution to the matching objective (19) for all y ̸= x,

ūt(y, x) = argmin
u

Epu(X|Xt=x)

[
Dϕ(ut(y, x), u

base
t (y, x)at(y;X, u)

]
Straightforward application of the matching framework (Lipman et al., 2024) suggests that

ūt(y, x) = Epū(X|Xt=x)

[
ubase
t (y, x)at(y;X, ū)

]
= ubase

t (y, x)e−Jt(y;ū)+Jt(x;ū) by (97)

Invoking Lemma 3.1, we deduce that ū = u⋆ is the optimal rate.

Corollary 3.3 (Discrete adjoint). At u := u⋆, the dynamics of discrete basic adjoint simplify to

− d
dt
at(y;X, u⋆) =

∑
z

ubase
t (z, y)at(z;X, u⋆), a1(y;X, u⋆) = e−g(y)+g(X1) (21)

which coincide with the dynamics of discrete adjoint in (8). That is, by the uniqueness of ODE
solutions, we have that at(y;X, u⋆) = ãt(y;X).

Proof. Notice that Gt(y, x;u) defined in (95) greatly simplifies when u := u⋆,

Gt(y, x;u⋆) =
∑
z ̸=y

(
ubase
t (z, y)− u⋆

t (z, y)
)

28



Published as a conference paper at ICLR 2026

Hence, the dynamics of discrete basic adjoint (98) reduce to

d
dt
at(y;X, u⋆) = at(y;X, u⋆)Gt(y, x;u⋆)

= at(y;X, u⋆)
∑
z ̸=y

(
ubase
t (z, y)− u⋆

t (z, y)
)

= −at(y;X, u⋆)ubase
t (y, y)−

∑
z ̸=y

ubase
t (z, y)at(z;X, u⋆)

= −
∑
z

ubase
t (z, y)at(z;X, u⋆)

where the third equality is due to the fact that for all z ̸= y,

Ep⋆(X|Xt=x) [u
⋆
t (z, y)at(y;X, u⋆)]

= u⋆
t (z, y)e

−Jt(y;u
⋆)+Jt(x;u

⋆) by (97)

= ubase
t (z, y)e−Jt(z;u

⋆)+Jt(y;u
⋆)−Jt(y;u

⋆)+Jt(x;u
⋆) by (48)

= ubase
t (z, y)e−Jt(z;u

⋆)+Jt(x;u
⋆)

= Ep⋆(X|Xt=x)

[
ubase
t (z, y)at(z;X, u⋆)

]
by (97)

That is, there exists a detailed balance between u⋆
t (z, y)at(y;X, u⋆) and ubase

t (z, y)at(z;X, u⋆)
w.r.t. optimal distribution, i.e.,

Ep⋆(X|Xt=x) [u
⋆
t (z, y)at(y;X, u⋆)] = Ep⋆(X|Xt=x)

[
ubase
t (z, y)at(z;X, u⋆)

]
(99)

C EXPERIMENT DETAILS

C.1 SYNTHETIC EXAMPLES

Implementation For both DAM and D1, we parametrize uθ
t (y, x) as the logits of a tensor of size

92×92×91×2. The first two dimensions correspond to all possible x ∈ Xdiscrete = {m, 1, . . . , 91}2,
the third dimension corresponds to all possible y ∈ X discrete conditioned on a given x, and the last
dimension corresponds to the two distinct jumps characterized in (22). For DAM, we use K = 16
samples to estimate the discrete adjoint ât in (13) for Checkerboard, and K = 64 samples for
Pinwheel. Since these problems are low-dimensional, we always use on-policy samples to compute
ât; that is, we do not maintain a replay buffer B for synthetic examples. Since D1’s and SVDD’s
codebases are specialized respectively to reasoning and molecular applications, we implement their
methods ourselves for the synthetic examples. All methods are trained on CPU using Adam (Kingma
& Ba, 2015) with the learning rate 1× 10−2.

Reward Functions For Checkerboard, we consider the reward function that upweights the diag-
onal blocks by 4.6, superdiagonal and subdiagonal blocks by 4.0, and other off-diagonal blocks by
3.4. For Pinwheel, we reweight the three circles respectively by 0.5, −1, and −20.

C.2 MATHEMATICAL REASONING TASKS

Inference We use the same decoding strategy as in Zhao et al. (2025). To decode a sequence of
N tokens, we use N/2 denoising steps and unmask 2 tokens in each step. They decode from left to
right in blocks using the semi-autoregressive decoding strategy (Nie et al., 2025), which they found
to yield slightly better performance. Specifically, the sequence is divided into blocks of length 32.
In each step, the 2 tokens with the highest confidence within the current block are unmasked. Once
all the tokens in the current block are unmasked, we move to the next block of 32 tokens.

Implementation For D1, we use their official implementation,4 which uses the TRL library (von
Werra et al., 2020). We build our DAM implementation on top of the same codebases. Both fine-
tuning methods use Low-Rank Adaptation (LoRA) (Hu et al., 2022) with a rank of r = 128 and

4https://github.com/dllm-reasoning/d1
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scaling factor α = 64. For all three tasks, DAM uses K = 12 samples to estimate the discrete
adjoint ât in (13).

Training All methods are trained on 8 Nvidia H100 GPUs with a sequence length of 128 to-
kens, batch size of 12 per GPU, and 2 gradient accumulation steps. We use the AdamW optimizer
(Loshchilov & Hutter, 2019) with parameters β1 = 0.9, β2 = 0.99, weight decay of 0.1, learning
rate of 3 × 10−6, and gradient clipping at 0.2. For both methods, we fine-tune for 3000, 3500, and
4000 steps (number of gradient updates) on GSM8K and MATH500, respectively.

Reward Functions We use the same reward functions as in Zhao et al. (2025), which we describe
below for completeness.

• GSM8K We conduct RL on the training split of the GSM8K dataset5 and evaluate on the
test split. We employ a composite reward function consisting of five components following
the unsloth implementation of reward functions:6

– XML Structure Reward: Rewards proper formatting with reasoning and answer
tags. +0.125 for each correctly placed opening and closing tag. A small penalty
of −0.001 for each extraneous token after the closing tag.

– Soft Format Reward: Reward of 0.5 for responses matching the pattern:
<reasoning>...(content)...</reasoning>
<answer>...(content)...</answer>

– Strict Format Reward: Reward of 0.5 for adhering to the exact prescribed format
with appropriate line breaks.

– Integer Answer Reward: Reward of 0.5 if the extracted answer is a valid integer.

– Correctness Reward: Reward of 2.0 if the extracted answer exactly matches the
ground truth.

In Table 1, the formatting reward rformat(x) corresponds to the sum of the first three afore-
mentioned rewards.

• MATH500 We train on the train split of the MATH dataset.7 Like GSM8K, we employ a
composite reward function comprising

– Format Reward: We reward the presence of <answer></answer> tags and
\boxed, as follows: 1.00 if answer tags are present with \boxed inside, 0.75 if
answer tags are present without \boxed in them, 0.50 if answer tags are not present,
but \boxed is present, and 0.25 if neither answer tags, nor \boxed is present

– Correctness Reward: We reward 2.0 if the correct answer is in \boxed

• Countdown We train on the training split of the dataset8 from the TinyZero project (Pan
et al., 2025), restricting to instances that use only three numbers. And we evaluate on
256 synthetically generated countdown questions with 3 numbers. We implement a reward
function that checks if an arithmetic expression constructed from given numbers reaches a
target value:

– Formatting Reward: 0.1 points when the equation uses the right numbers but doesn’t
reach the target

– Correctness Reward: 1.0 point when the equation equals the target and uses exactly
the available numbers

5https://huggingface.co/datasets/openai/gsm8k
6https://unsloth.ai/blog/r1-reasoning
7https://huggingface.co/datasets/ankner/math-500
8https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
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C.3 ADDITIONAL EXPERIMENTS
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Figure 3: Rewards Curves on GSM8K and Countdown. DAM is more effective than D1 in
maximizing reward r in (23).

Tables 3, 4 and 5 present additional generated samples on GSM8K, MATH500 and Countdown, all
conditioned on unseen prompts from the test set.
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Table 3: Generated Samples on GSM8K from the base model and two fine-tuned models, all
conditioned on the same unseen prompts. Correct and wrong answers are colored.

Prompt: Jaime is a computer programmer for a company that currently has employed 100 people. Senior
programmers are paid $400 more than junior programmers. If the number of Junior programmers is 2/5
of the total number of employees, and they are each paid $2000 per month, calculate the total amount of
money the company pays to all the programmers per month.
Answer: 224000

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
The number of Junior program-
mers is 2/5 * 100 = 40. The
number of Senior program-
mers is 100 - 40 = 60. The total
salary for Junior programmers
is 40 * $2000 = $80000. The
total salary for Senior program-
mers is 60 * ($2000 + $400) =
$144000.</reasoning>
<answer> 2240000000 </answer>

<reasoning>
The number of junior program-
mers is 2/5 * 100 = 40. The
number of senior programmers is
100 - 40 = 60. Each senior pro-
grammer is paid $2000 + $400
= $2400 per month. The total
amount paid to all programmers
per month is 40 * $2000 + 60 *
$2400 = $224000.
</reasoning>
<answer> 224000 </answer>

<reasoning>
The number of Junior program-
mers is 2/5 * 100 = 40. The
number of Senior program-
mers is 100 - 40 = 60. The to-
tal amount of money the com-
pany pays to all the program-
mers per month is 40*2000 +
60*2400.</reasoning>
<answer> 94000 </answer>

Prompt: John hires a driving service to get him to work each day. His work is 30 miles away and he has
to go there and back each day. He goes to work 5 days a week for 50 weeks a year. He gets charged $2
per mile driven and he also gives his driver a $150 bonus per month. How much does he pay a year for
driving?
Answer: 31800

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
John drives 30 miles each way,
so he drives a total of 30 miles
per day. He drives 30 miles per
day for 5 days a week, so he
drives 150 miles per week. There
are 50 weeks per year, so he
drives 7500 miles per year. He
gets charged $2 per mile, so he
pays $15000 per year for the.
He also gives his driver a $150
bonus per month.</reasoning>
<answer> 15000 </answer>

<reasoning>
John drives 30 * 2 = 60 miles
per day. He drives 60 * 5 = 300
miles per week. He drives 300
* 50 = 15000 miles per year. He
pays 15000 * 2 = $30000 for the
miles. He pays 30000 + 150 * 12
= $31800 per year.</reasoning>
<answer> 31800 </answer>

<reasoning>
John drives 60 miles each way
so he drives 120 miles per
day He drives 600 miles per
week * 50 weeks = 30,000
miles per year He pays 30,000
miles * $2/mile = $60,000 per
year.</reasoning>
<answer> 60000 </answer>

Prompt: Bob is in charge of doing laundry for a large hotel. Each room has two sheets, one comforter,
twice as many pillow cases as sheets and twice as many towels as pillow cases. How many pieces of laun-
dry are there in 80 rooms?
Answer: 1200

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
Each room has
- 2 sheets
- 1 comforter
- Twice as many pillow cases as
sheets: × 2 = 2 pillow cases
- Twice as many towels as pillow
cases: × 2 = 4 towels
So, each room has a total of 2 +
1 + 2 + 4 = 9 pieces of laundry.
For 80 rooms, the total number
of pieces of laundry is 80 * 9 =
720.
</reasoning>
<answer> 720

<reasoning>
Each room has 2 sheets + 1 com-
forter + 2 * 2 pillow cases + 2
* 2 * 2 towels = 3 + 4 + 8 = 15
pieces of laundry pieces. There-
fore, 80 rooms have 15 * 80 =
1200 pieces of laundry. </rea-
soning>
<answer> 1200 </answer>

<reasoning>
Each room has 2 sheets, 1 com-
forter, 2*2 = 4 pillow cases, and
2*4 = 8 towels. That, each room
has 2+1++4+8 = 15 pieces of
laundry. So, 80 rooms have
15*80 = 1200 </reasoning>
<answer> 1200 </answer>
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Table 4: Generated Samples on MATH500 from the base model and two fine-tuned models, all
conditioned on the same unseen prompts. Correct and wrong answers are colored.

Prompt: In 1992, a scoop of gelato could be purchased in Italy for 1200 lire. The same gelato would
have cost $1.50 in the U.S. At the equivalent exchange rate between the lire and the dollar, how many
dollars would be equivalent to 1,000,000 lire?
Answer: 1250

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
To find how many dollars are
equivalent to 1,000,000 lire,
we need to know the exchange
rate between 1 lire and 1 dol-
lar. From the given informa-
tion, we know that 1200 lire is
equivalent to $1.50. Therefore,
1,000,000 lire would be equiva-
lent to $1,000,000 / 1200 = 833
dollars.</reasoning>
<answer> 833 </answer>

<reasoning>
To determine how many dol-
lars are equivalent to 1,000,000
lire, we need to know the ex-
change rate between 1 lire and 1
dollar. Since 1200 lire is equiv-
alent to $1.50, the equivalent
exchange rate is 1 lire = $1.50
/ 1200 = $0.0125. Therefore,
1,000,000 lire is equivalent
to:</reasoning>
<answer> 1250 </answer>

<reasoning>
To find how many dollars are
equivalent to 1,000,000 lire,
we need to know the exchange
rate between 1 lire and 1 dollar.
Given that 1200 lire is equivalent
to $1.50, we can deduce that 1
lire is equivalent to $1.50 / 1200
= $0.00125.</reasoning>
<answer> 125 </answer>

Prompt: If y = 27x2+9x+3
27x3+9x2+3x+1

, at what value of y will there be a horizontal asymptote?
Answer: 0

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
To find the horizontal asymp-
tote of the function, we need to
compare the degrees of the nu-
merator and the denominator.
The degree of a polynomial is
the highest power of x in the
polynomial. In this case, the de-
gree of the numerator is 2 and
the degree of the denominator
is 3. Since the degree of the nu-
merator is less than the degree of
the denominator, the horizontal
asymptote is at y = 0. There-
fore, the value of y at which
there is a horizontal asymptote.
</reasoning>
<answer> 0 </answer>

<reasoning>
To determine the horizon-
tal asymptote of the function
y = 27x2+9x+3

27x3+9x2+3x+1
, we need to

analyze the degrees of the poly-
nomials in the numerator and the
denominator. The degree of the
numerator is 2, and the degree
of the denominator is 3. Since
the degree of the numerator is
less than the degree of the de-
nominator, there is no horizontal
asymptote. </reasoning>
<answer> 0 </answer>

<reasoning>
To find the horizontal asymp-
tote of the function, we need to
compare the degrees of the nu-
merator and the denominator.
The degree of a polynomial is
the highest power of x in the
polynomial. Here, the degree of
the numerator is 2 and the degree
of the denominator is 3. When
the degrees of the numerator
and the denominator are differ-
ent, the horizontal asymptote is
determined by the ratio of the
leading coefficients. Therefore,
the horizontal asymptote is 27

27
.

</reasoning>

<answer> 1
3
</answer>

Prompt: Find the sum of the real roots of x4 − 80x− 36 = 0.
Answer: 4

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
We can rewrite the given equa-
tion as x4 − 80x − 36 =
(x2 − 41)(x + 1) = 0. This,
we see, gives us x2 = 41 or
x = −1. Since x2 = 41
has no real solutions, the only
real root is x = −1. There-
fore, the sum of the real roots is
−1 +−1 = −2. </reasoning>
<answer> -2 </answer>

<reasoning>
The given equation is x4−80x−
36 = 0. We can rewrite this
as (x2 − 20)2 = 0. Solving
x2 − 20 = 0, we get x2 =
20, which gives x = ±2

√
5.

Therefore, the sum of the real
roots is 2

√
5 + (−2

√
5) = 0.

</reasoning>
<answer> 0 </answer>

<reasoning>
The quartic equation x4 − 80x−
36 = 0 can be rewritten as
(x2−20x−36)(x2+20x+36) =
0. Each factor these two factors
has two real roots, so the sum of
the real roots is the sum of the
roots of each factor, which is 20.
Therefore, the sum of the real
roots of the quartic equation is 0.
</reasoning>
<answer> 0 </answer>
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Table 5: Generated Samples on Countdown from the base model and two fine-tuned models, all
conditioned on the same unseen prompts. Correct and wrong answers are colored.

Prompt: Using only the numbers [67, 39, 70], create an arithmetic expression that evaluates to exactly
98. You must use all numbers from the list, and each number must be used exactly once. You may use the
operations +, -, *, and / as needed.
Answer: 70 - 39 + 67

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
To create an arithmetic expres-
sion that evaluates to 98 using
the numbers [67, 39, 70], we
need to find the correct com-
bination of operations and, if
possible, parentheses. Given
the constraints of the problem,
we can start by considering the
properties of the numbers and
the operations operations avail-
able.
</reasoning>
<answer> 67*70 - 39 </answer>

<reasoning>
To create an arithmetic expres-
sion that evaluates to exactly 98
using the numbers [67, 39, 70],
we need to find a combination of
the operations +, -, *, and / that
results in 98.
</reasoning>
<answer> 70 - 39 + 67 </answer>

<reasoning>
To create an arithmetic expres-
sion that evaluates to 98 using
the numbers [67, 39, 70], we
need to consider the operations
of addition, subtraction, multi-
plication, and division. We can
start by trying to combine the
numbers in a way that leads us to
98. One possible approach is to
use the numbers and their oper-
ations to a close that sums up to
98. We can also try using the and
operations to get to 98.
</reasoning>
<answer> 67+39-770/70
</answer>

Prompt: Using only the numbers [15, 78, 62], create an arithmetic expression that evaluates to exactly
1. You must use all numbers from the list, and each number must be used exactly once. You may use the
operations +, -, *, and / as needed.
Answer: 78 - 62 - 15

Response: LLaDA-8B-Instruct LLaDA-8B-Instruct w/ DAM LLaDA-8B-Instruct w/ D1

<reasoning>
To create an arithmetic expres-
sion that evaluates to exactly 1
using the numbers [15, 78, 62],
we need to consider the oper-
ations of addition, subtraction,
multiplication, and division. We
can start by trying to combine
the numbers in a way that al-
lows us to reach 1. One possible
approach is to use the numbers
directly to form other numbers
that can be further manipulated
to reach 1. Another approach is
to use the numbers in a combina-
tion of operations to achieve the
desired1.
</reasoning>
<answer> 15*78/62 </answer>

<reasoning>
To create an arithmetic expres-
sion that evaluates to exactly 1
using the numbers [15, 78, 62],
we need to find the correct com-
bination of the operations +, -, *,
and /.
</reasoning>
<answer> 78 / 62 - 15 </answer>

<reasoning>
To create an arithmetic expres-
sion that evaluates to exactly 1
using the numbers [15, 78, 62],
we need to consider the oper-
ations of addition, subtraction,
multiplication, and division.
We can start by trying to com-
bine the numbers in a way that
leads us to the target value. One
possible approach is to use the
operations strategically to break
down the problem into smaller
parts. can we find a combination
of operations that will allow us
to reach the target value of 1?
</reasoning>
<answer> 78/15-62/15 </answer>
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D REBUTTAL EXPERIMENTS

D.1 ACCURACY VS WALL CLOCK TIME
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Figure 4: Accuracy vs Wall Clock Time. We compare D1 and DAM but plot the wall clock time
in hours on the x-axis.

D.2 VARYING K
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Figure 5: Varying K on Synthetic Examples. We vary K

We investigate the effect of varying the number of samples K on the synthetic examples and plot the
result in Figure 5. Larger values of K result in faster convergence from the lower bias and variance
of the importance-weighted discrete adjoint in (13).
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