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Abstract

Current reinforcement-learning methods are unable to directly learn policies that
solve the minimum cost reach-avoid problem to minimize cumulative costs subject
to the constraints of reaching the goal and avoiding unsafe states, as the structure
of this new optimization problem is incompatible with current methods. Instead, a
surrogate problem is solved where all objectives are combined with a weighted
sum. However, this surrogate objective results in suboptimal policies that do not
directly minimize the cumulative cost. In this work, we propose RC-PPO, a
reinforcement-learning-based method for solving the minimum-cost reach-avoid
problem by using connections to Hamilton-Jacobi reachability. Empirical results
demonstrate that RC-PPO learns policies with comparable goal-reaching rates to
while achieving up to 57% lower cumulative costs compared to existing methods
on a suite of minimum-cost reach-avoid benchmarks on the Mujoco simulator.

1 Introduction

Many real-world tasks can be framed as a constrained optimization problem where reaching a goal at
the terminal state and ensuring safety (i.e., reach-avoid) is desired while minimizing some cumulative
cost as an objective function, which we term the minimum-cost reach-avoid problem.

The cumulative cost, which differentiates this from the traditional reach-avoid problem, can be used to
model desirable aspects of a task such as minimizing energy consumption, maximizing smoothness, or
any other pseudo-energy function, and allows for choosing the most desirable policy among the many
policies that can satisfy the reach-avoid requirements. For example, energy-efficient autonomous
driving [52, 74] can be seen as a task where the vehicle must reach a destination, follow traffic
rules, and minimize fuel consumption. Minimizing fuel use is also a major concern for low-thrust or
energy-limited systems such as spacecraft [53] and quadrotors [36]. For example, quadrotors often
have to choose limited battery life to meet the payload capacity. Hence, minimizing their energy
consumption, which can be done by taking advantage of wind patterns, is crucial for keeping them
airborne to complete more tasks.

If only a single control trajectory is desired, this class of problems can be solved using numerical
trajectory optimization by either optimizing the timestep between knot points [55] or a bilevel
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optimization approach that adjusts the number of knot points in an outer loop [50, 32, 59]. However,
in this setting, the dynamics are assumed to be known, and only a single trajectory is obtained.
Therefore, the computation will need to be repeated when started from a different initial state.
The computational complexity of trajectory optimization prevents it from being used in real time.
Moreover, the use of nonlinear numerical optimization may result in poor solutions that lie in
suboptimal local minima [19].

Alternatively, to obtain a control policy, reinforcement learning (RL) can be used. However, existing
methods are unable to directly solve the minimum-cost reach-avoid problem. Although RL has been
used to solve many tasks where reaching a goal is desired, goal-reaching is encouraged as a reward
instead of as a constraint via the use of either a sparse reward at the goal [4, 51, 67], or a surrogate
dense reward [67, 37]1. However, posing the reach constraint as a reward then makes it difficult to
optimize for the cumulative cost at the same time. In many cases, this is done via a weighted sum
of the two terms [11, 40, 28]. However, the optimal policy of this new surrogate objective may not
necessarily be the optimal policy of the original problem. Another method of handling this is to treat
the cumulative cost as a constraint and solve for a policy that maximizes the reward while keeping
the cumulative cost under some fixed threshold, resulting in a new constrained optimization problem
that can be solved as a constrained Markov decision process (CMDP) [3]. However, the choice of
this fixed threshold becomes key: too small and the problem is not feasible, destabilizing the training
process. Too large, and the resulting policy will simply ignore the cumulative cost.

To tackle this issue, we propose Reach Constrained Proximal Policy Optimization(RC-PPO), a
new algorithm that targets the minimum-cost reach-avoid problem. We first convert the reach-avoid
problem to a reach problem on an augmented system and use the corresponding reach value function
to compute the optimal policy. Next, we use a novel two-step PPO-based RL-based framework to
learn this value function and the corresponding optimal policy. The first step uses a PPO-inspired
algorithm to solve for the optimal value function and policy, conditioned on the cost upper bound.
The second step fine-tunes the value function and solves for the least upper bound on the cumulative
cost to obtain the final optimal policy. Our main contributions are summarized below:

• We prove that the minimum-cost reach-avoid problem can be solved by defining a set of
augmented dynamics and a simplified constrained optimization problem.

• We propose RC-PPO, a novel algorithm based on PPO that targets the minimum-cost reach-avoid
problem, and prove that our algorithm converges to a locally optimal policy.

• Simulation experiments show that RC-PPO achieves reach rates comparable with the baseline
method with the highest reach rate while achieving significantly lower cumulative costs.

2 Related Works

Terminal-horizon state-constrained optimization Terminal state constraints are quite common
in the dynamic optimization literature. For the finite-horizon case, for example, one method of
guaranteeing the stability of model predictive control (MPC) is with the use of a terminal state
constraint [21]. Since MPC is implemented as a discrete-time finite-horizon numerical optimization
problem, the terminal state constraints can be easily implemented in an optimization program as a
normal state constraint. The case of a flexible-horizon constrained optimization is not as common
but can still be found. For example, one method of time-optimal control is to treat the integration
timestep as a control variable while imposing state constraints on the initial and final knot points [55].
Another method is to consider a bilevel optimization problem, where the number of knot points is
optimized for in the outer loop [50, 32, 59].

Goal-conditioned Reinforcement Learning There have been many works on goal-conditioned
reinforcement learning. These works mainly focus on the challenges of tackling sparse rewards
[4, 67, 70, 37] or even learning without rewards completely, either via representation learning
objectives [44, 27, 45, 68, 61, 46, 13, 48, 42, 20] or by using contrastive learning to learn reward
functions [23, 16, 71, 25, 12, 35, 34, 72, 75, 47], often in imitation learning settings [31, 24]. However,
the manner in which these goals are reached is not considered, and it is difficult to extend these works
to additionally minimize some cumulative cost.

1If the dense reward is not specified correctly, however, it can lead to unwanted local minima [67] that
optimize the reward function in an undesirable manner, i.e., reward hacking [17, 2]
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Constrained Reinforcement Learning One way of using existing techniques to approximately
tackle the minimum-cost reach-avoid problem is to flip the role of the cumulative-cost objective and
the goal-reaching constraint by treating the goal-reaching constraint as an objective via a (sparse or
dense) reward and the cumulative-cost objective as a constraint with a cost threshold, turning the
problem into a CMDP [3]. In recent year, there has been significant interest in deep RL methods for
solving CMDPs [1, 64, 60]. While these methods are effective at solving the transformed CMDP
problem, the optimal policy to the CMDP may not be the optimal policy to the original minimum-cost
reach-constrained problem, depending on the choice of the cost constraint.

Reachability Analysis Reachability analysis looks for solutions to the reach-avoid problem. That
is, to solve for the set of initial conditions and an appropriate control policy to drive a system to
a desired goal set while avoiding undesireable states. Hamilton-Jacobi (HJ) reachability analysis
[66, 38, 43, 39, 5] provides a methodology for the case of dynamics in continuous-time via the
solution of a partial differential equation (PDE) and is conventionally solved via numerical PDE
techniques that use state-space discretization [43]. This has been extended recently to the case of
discrete-time dynamics and solved using off-policy [22, 33] and on-policy [58, 26] reinforcement
learning. While reachability analysis concerns itself with the reach-avoid problem, we are instead
interested in solutions to the minimum-cost reach-avoid problem.

3 Problem Formulation

In this paper, we consider a class of minimum-cost reach-avoid problems defined by the tuple
M := ⟨X ,U , f, c, g, h⟩. For the state space X ⊆ Rn and action space U ⊆ Rm, the control objective
for the system states xt ∈ X evolving under the deterministic discrete dynamics f : X × U → X
as xt+1 = f(xt, ut) is to reach the goal region G and avoid the unsafe set F while minimizing the
cumulative cost

∑T−1
t=0 c(xt, π(xt)) under control input ut = π(xt) for a designed control policy

π : X → U , where T denotes the first timestep that the agent reaches the goal G. The sets G and
F are given as the 0-sublevel and strict 0-superlevel sets g : X → R and h : X → R respectively,
i.e., G := {x ∈ X | g(x) ≤ 0} and F := {x ∈ X | h(x) > 0}. This can be formulated formally as
finding a policy π that solves the following constrained flexible final-time optimization problem for a
given initial state x0:

min
π, T

T−1∑
t=0

c
(
xt, π(xt)

)
(1a)

s.t. xT ∈ G, (1b)
xt ̸∈ F ∀t ∈ {0, . . . , T}, (1c)

xt+1 = f
(
xt, π(xt)

)
. (1d)

Note that as opposed to either traditional finite-horizon constrained optimization problems where T
is fixed or infinite-horizon problems where T = ∞, the time horizon T is also a decision variable.
Moreover, the goal constraint (1b) is only enforced at the terminal timestep T . These two differences
prevent the straightforward application of existing RL methods to solve (1).

3.1 Reachability Analysis for Reach-Avoid Problems

In discrete time, the set of initial states that can reach the goal G without entering the avoid set F can
be represented by the 0-sublevel set of a reach-avoid value function V πg,h [33]. Given functions g, h
describing G and F and a policy π, the reach-avoid value function V πg,h : X → R is defined as

V πg,h(x0) = min
T∈N

max
{
g(xπT ), max

t∈{0,...,T}
h(xπt )

}
, (2)

where xπt denote the system state at time t under a policy π starting from an initial state xπ0 = x0. In
the rest of the paper, we suppress the argument x0 for brevity whenever clear from the context. It
can be shown that the reach-avoid value function satisfies the following recursive relationship via the
reach-avoid Bellman equation (RABE) [33]

V πg,h(x
π
t ) = max

{
h(xπt ), min{g(xπt ), V πg,h(xπt+1)}

}
∀t ≥ 0. (3)
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The Bellman equation (3) can then be used in a reinforcement learning framework (e.g., via a
modification of soft actor-critic[30, 29]) as done in [33] to solve the reach-avoid problem.

Note that existing methods of solving reach-avoid problems through this formulation focus on
minimizing the value function V πg,h. This is not necessary as any policy that results in V πg,h ≤ 0 solves
the reach-avoid problem, albeit without any cost considerations. However, it is often the case that we
wish to minimize a cumulative cost (e.g., (1a)) on top of the reach-avoid constraints (1b)-(1c) for a
minimum-cost reach-avoid problem. To address this class of problems, we next present a modification
to the reach-avoid framework that additionally enables the minimization of the cumulative cost.

3.2 Reachability Analysis for Minimum-cost Reach-Avoid Problems

We now provide a new framework to solve the minimum-cost reach-avoid by lifting the original
system to a higher dimensional space and designing a set of augmented dynamics that allow us to
convert the original problem into a reachability problem on the augmented system.

Let I denote the shifted indicator function defined as Ib∈B :=

{
+1 b ∈ B,

−1 b ̸∈ B.
. Define the augmented

state as x̂ = (x, y, z) ⊆ X̂ := X × {−1, 1} × R. We now define a corresponding augmented
dynamics function f ′ : X̂ × U → X̂ as

f̂
(
xt, yt, zt, ut

)
=
(
f(xt), max{If(xt)∈F , yt}, zt − c(xt, ut)

)
, (4)

where y0 = Ix0∈F . Note that yt = 1 if the state has entered the avoid set F at some timestep from 0
to t and is unsafe, and yt = 0 if the state has not entered the avoid set F at any timestep from 0 to
t and is safe. Moreover, zt is equal to z0 minus the cost-to-come, i.e., for state trajectory x0:t and
action trajectory u0:t, i.e., zt+1 = z0 −

∑t
k=0 c(xt, ut). Under the augmented dynamics, we now

define the following augmented goal function ĝ : X̂ → R as

ĝ(x, y, z) := max{g(x), Cy, −z}, (5)

where C > 0 is an arbitrary constant.2 With this definition of ĝ, an augmented goal region Ĝ can
be defined as Ĝ := {x̂ | ĝ(x̂) ≤ 0} = {(x, y, z) | x ∈ G, y = −1, z ≥ 0}. In other words, starting
from initial condition x̂0 = (x0, y0, z0), reaching the goal on the augmented system x̂T ∈ ĝ at
timestep T implies that 1) the goal is reached at xT for the original system, 2) the state trajectory
remains safe and does not enter the avoid set F , and 3) z0 is an upper-bound on the total cost-to-
come:

∑T−1
t=0 c(xt, ut) ≤ z0. We call this the upper-bound property. The above intuition on the

newly defined augmented system is formalized in the following theorem, whose proof is provided in
Appendix C.1.
Theorem 1. For given initial conditions x0 ∈ X , z0 ∈ R and control policy π, consider the trajectory
for the original system {x0, . . . xT } and its corresponding trajectory for the augmented system
{(x0, y0, z0), . . . (xT , yT , zT )} for some T > 0. Then, the reach constraint xT ∈ G (1b), avoid
constraint xt ̸∈ F ∀t ∈ {0, 1, . . . , T} (1c) and the upper-bound property z0 ≥

∑T−1
k=0 c

(
xk, π(xk)

)
hold if and only if the augmented state reaches the augmented goal at time T , i.e., (xT , yT , zT ) ∈ Ĝ.

With this construction, we have folded the avoid constraints xt ̸∈ F (1c) into the reach specification
on the augmented system. In other words, solving the reach problem on the augmented system results
in a reach-avoid solution of the original system. As a result, we can simplify the value function (2) and
Bellman equation (3), resulting in the following definition of the reach value function Ṽĝ : X̂ → R

Ṽ πĝ (x̂0) = min
t∈N

ĝ(x̂πt ). (6)

Similar to (2), the 0-sublevel set of Ṽĝ describes the set of augmented states x̂ that can reach the
augmented goal Ĝ. We can also similarly obtain a recursive definition of the reach value function Ṽĝ
given by the reachability Bellman equation (RBE)

Ṽ πĝ (xπt , y
π
t , z

π
t ) = min

{
ĝ(xπt , y

π
t , z

π
t ), Ṽ

π
ĝ (xπt+1, y

π
t+1, z

π
t+1)

}
∀t ≥ 0, (7)

2In practice, we use C = maxx∈X g(x).
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whose proof we provide in Appendix C.2.

We now solve the minimum-cost reach-avoid problem using this augmented system. By Theorem 1,
the z0 is an upper bound on the cumulative cost to reach the goal while avoiding the unsafe set if and
only if the augmented state x̂ reaches the augmented goal. Since this upper bound is tight, the least
upper bound z0 that still reaches the augmented goal thus corresponds to the minimum-cost policy
that satisfies the reach-avoid constraints. In other words, the minimum-cost reach-avoid problem for
a given initial state x0 can be reformulated as the following optimization problem.

min
π, z0

z0 (8a)

s.t. Ṽ πĝ (x0, Ix0∈F , z0) ≤ 0. (8b)

Remark 1 (Connections to the epigraph form in constrained optimization). The resulting optimization
problem (8) can be interpreted as an epigraph reformulation [9] of the minimum-cost reach-avoid
problem (1). The epigraph reformulation results in a problem with linear objective but yields the
same solution as the original problem [9]. The construction we propose in this work can be seen as a
dynamic version of this epigraph reformulation technique originally developed for static problems
and is similar to recent results that also make use of the epigraph form for solving infinite-horizon
constrained optimization problems [58].

4 Solving with Reinforcement Learning

In the previous section, we reformulated the minimum-cost reach-avoid problem by constructing an
augmented system and used its reach value function (6) in a new constrained optimization problem
(8) over the cost upper-bound z0. In this section, we propose an RL-based method for solving (8) via
a two-phase method.

In the first step, we learn the optimal Ṽ πg over all possible policies π using reinforcement learning.
We consider the common policy gradient framework [63]. In this framework, we extend the class of
control policies considered to stochastic ones to encourage exploration. To this end, we re-define the
reach value function V πĝ using a similar Bellman equation under a stochastic policy as follows.

Definition 1. Stochastic Reachability Bellman equation (SRBE) Given function ĝ in (5), a stochastic
policy π, and initial conditions x0 ∈ X , z0 ∈ R, the stochastic reach value function Ṽ πĝ is defined as
the solution to the following stochastic Bellman equation:

Ṽ πĝ (x̂t) = Eτ∼π[min{ĝ(x̂t), Ṽ πĝ (x̂t+1)}] ∀t ≥ 0, (9)

where x̂0 = (x0, y0, z0) with y0 = Ix0∈F .

For this stochastic Bellman equation, the Q function [62] is defined as

Q̃πĝ (x̂t, ut) = min{ĝ(x̂t), Ṽg(x̂t+1)}. (10)

We can now derive the corresponding policy gradient theorem for Ṽ πĝ with stationary distribution on
the following Markov Decision Process with absorbing state under deterministic transition function
and stochastic policy π.

Definition 2. (Reachability Markov Decision Process) The Reachability Markov Decision Process
is defined on the augmented dynamic in Equation (5) with an added absorbing state s0. We define the
transition function f ′r with the absorbing state as

f ′r(x̂, u) =

{
f̂(x̂, u), if Ṽ πĝ (x̂) > ĝ(f̂(x̂, u))

s0, if Ṽ πĝ (x̂) ≤ ĝ(f̂(x̂, u)).
(11)

We denote the stationary distribution starting at x̂ ∈ X × {−1, 1} × R under stochastic policy π as
d′π(x̂).

We now derive a policy gradient theorem for the Reachability MDP in Definition 2 which yields an
almost identical expression for the policy gradient.
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Phase one

Original System

Augmented Dynamic 
System

Training

…

Minimize

Phase two

Fine-Tune

Calculate

Execution

Figure 1: Summary of the RC-PPO algorithm. In phase one, the original dynamic system is
transformed into the augmented dynamic system defined in (4). Then RL is used to optimize value
function Ṽ πĝ and learn a stochastic policy π. In phase two, we fine-tune Ṽ πĝ on a deterministic version
of π and compute the optimal upper-bound z∗ to obtain the optimal deterministic policy π∗.

Theorem 2. (Policy Gradient Theorem) For policy πθ parameterized by θ, the gradient of the policy
value function Ṽ πθ

ĝ satisfies

∇θṼ
πθ

ĝ (x̂) ∝ Ex̂′∼d′π(x̂),u∼πθ

[
Q̃πθ (x̂′, u)∇θ lnπθ (u | x̂′)

]
, (12)

under the stationary distribution d
′

π(x̂) for Reachability MDP in Definition 2

The proof of this new policy gradient theorem Theorem 2 follows the proof of the normal policy
gradient theorem [62], differing only in the expression of the stationary distribution, which we provide
in Appendix C.3.

In practice, we cannot get the ‘true’ Ṽ πθ

ĝ for given πθ. Thus, the stationary distribution d′π(x̂) in
Definition 2 is hard to simulate during the learning process. Instead, we consider the stationary
distribution under the original augmented dynamic system. Also, note that Definition 1 does not
induce a contraction map. This harms the performance of the outcome policy. We apply the same
trick as [33] by introducing an additional discount factor γ into the Bellman equation with (7) as

Ṽ πĝ (x̂t) = (1− γ)ĝ(x̂t) + γEx̂t+1∼τ [min{ĝ(x̂t), Ṽ πĝ (x̂t+1)}]. (13)

This provides us with a contraction map (proved in [33]) and we leave the discussion of choosing γ
in Appendix A.

Under this Bellman equation, we could derive the Q function as

Q̃πĝ (x̂t, ut) = (1− γ)ĝ(x̂t) + γmin{ĝ(x̂t), Ṽ πĝ (x̂t+1)}. (14)

Following proximal policy optimization (PPO) [57], we use generalized advantage estimation (GAE)
[56] to compute a variance-reduced advantage function Ãπĝ = Q̃πĝ − Ṽ πĝ for the policy gradient

theorem Theorem 2 using the λ-return [62]. We refer to Appendix B for the definition of Âπ(GAE)
ĝ

and denote the loss function when θ = θl as Jπ(θ) = Ex̂,u∼πθl

[
Aπθl (x̂, u)

]
, where

Aπθl (x̂, u) = max

(
− πθ(u | x̂)
πθl(u | x̂)

Â
πθl

(GAE)

ĝ (x̂, u), CLIP
(
ϵ,−Âπθl

(GAE)

ĝ (x̂, u)
))

,

CLIP (ϵ, A) =

{
(1 + ϵ)A, A ≥ 0,

(1− ϵ)A, A < 0.

(15)

An empirical comparison of the GAE estimator is also provided in Appendix B.

The phase one of our algorithm Reachability Constraint Proximal Policy Gradient (RC-PPO) is
presented in Algorithm 1.
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Algorithm 1 RC-PPO Algorithm (Phase One)

Require: Initial policy parameter θ0, value function parameter ω0

1: for k = 0, . . . do
2: Collect set of trajectories D with policy πθk for T timesteps
3: Compute advantage estimates Aπθk

4: Fit value function by regression on mean-square error
5: Update the policy parameter θ by minimizing Jπ(θ)
6: end for
7: return Parameter θ, ω

In phase two, because we derive our framework based on deterministic policy scenarios, to calculate
optimal z for all (x, y) ∈ X × {−1, 1}, we define π∗(x̂) := argmaxu∈U p(u | x̂). After fixing our
policy as deterministic one, we fine-tune V πĝ based on π∗ and obtain Ṽ ∗

ĝ . In this way, Problem 8
becomes a 1D root-finding problem. This could be easily tackled through the bisection method. To
further boost the bisection step, we apply regression on tuple ((x, y), z∗) where (x, y) is uniformly
sampled in X ×{−1, 1} and z∗ is minimal value that satisfies V ∗

ĝ (x, y, z
∗) ≤ 0 got through bisection

method. We conclude the second phase of RC-PPO as

Algorithm 2 RC-PPO Algorithm (Phase Two)

Require: Policy parameter θ, value function parameter ω and estimate maximal energy budget zmax
1: for k = 0, . . . do
2: Collect set of trajectories D with deterministic policy π∗ for T timesteps
3: Fine-tune value function by regression on mean-square error
4: end for
5: for k = 0, . . . do
6: Sample (x, y) ∈ X × {−1, 1}
7: Calculate z∗ through bisection method over [0, zmax]
8: end for
9: Train network z̃(x, y) on previous samples

10: return Optimal policy π∗(x, y, z̃(x, y))

We leave the theoretical analysis in Appendix A for the choice of γ. We refer to Appendix D for a
convergence proof of an actor-critic version of our method without the GAE estimator.

5 Experiments

Baselines We consider two categories of RL baselines. The first is goal-conditioned reinforcement
learning which focuses on goal-reaching but does not consider minimization of the cost. For this
category, we consider the Contrastive Reinforcement Learning (CRL) [20] method. We also compare
against safe RL methods that solve CMDPs. As the minimum-cost reach-avoid problem (1) cannot
be posed as a CMDP, we reformulate (1) into the following surrogate CMDP

min
π

Ext,ut∼dπ

∑
t

[
− γtr(xt, ut)

]
(16a)

s.t. Ext,ut∼dπ

∑
t

[
γt1xt∈F × Cfail

]
≤ 0, (16b)

Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
≤ Xthreshold (16c)

where the reward r incentivies goal-reaching, Cfail is a term balancing two constraint terms, and
Xthreshold is a hyperparameter on the cumulative cost. For this category, we consider the CPPO [60]
and RESPO [26]. Note that RESPO also incorporates reachability analysis to adapt the Lagrange
multipliers for each constraint term. We implement the above CMDP-based baselines with three
different choices of Xthresholds: XL, XM and XH. For RESPO, we found XM to outperform both XL

and XH and thus only report results for XM.
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Pendulum Safety Hopper WindField PointGoal Safety HalfCheetah FixedWing

Figure 2: Illustrations of the benchmark tasks. In each picture, red denotes the unsafe region to be
avoided, while green denotes the goal region to be reached.
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Figure 3: Reach rates of the final converged policies. RC-PPO consistently achieves the highest reach
rates in all benchmark tasks.

We also consider the static Lagrangian multiplier case. In this setting, the reward function becomes
r(xt)−β(1xt∈F ×Cfail+ c(xt, ut)) for a constant Lagrange multiplier β. We consider two different
levels of β (βL, βH) in our experiments, resulting in the baselines PPO_βL and PPO_βH. More
details are provided in Appendix E.

Benchmarks We compare RC-PPO with baseline methods on several minimum-cost reach-avoid
environments. We consider an inverted pendulum (Pendulum), an environment from Safety Gym
[54] (PointGoal) and two custom environments from MuJoCo [65], (Safety Hopper, Safety
HalfCheetah) with added hazard regions and goal regions. We also consider a 3D quadrotor
navigation task in a simulated wind field for an urban environment [69, 8] (WindField) and an
Fixed-Wing avoid task from [58] with an additional goal region (FixedWing). More details on the
benchmark can be found in Appendix F.

Evaluation Metrics Since the goal of RC-PPO is minimizing cost consumption while reaching
goal without entering the unsafe region F . We evaluate algorithm performance based on (i) reach rate,
(ii) cost. The reach rate is the ratio of trajectories that enter goal region G without violating safety
along the trajectory. The cost denotes the cumulative cost over the trajectory

∑T
k=0 c(xk, π(xk)).

5.1 Main Experiments

We first compare our algorithm with other baseline algorithms under a sparse reward setting. The
comparison result is summarized in Figure 3. In all environments, the reach rate for all baseline
algorithms is very low. Also, there is a general trend between the reach rate and Lagrangian coefficient.
CPPO_XL and PPO_βhi have higher Lagrangian coefficients which leads to a lower reach rate.

5.2 Compare with Baselines with Reward Shaping Term

Reward shaping is a common method that can be used to improve the performance of RL algorithms,
especially in the sparse reward setting [41, 49]. To see whether the same conclusions still hold even
in the presence of reward shaping, we retrain the baseline methods but with reward shaping using a
distance function-based potential function (see Appendix E for more details).

The results in Figure 4 demonstrate that RC-PPO remains competitive against the best baseline
algorithms in reach rate while achieving significantly lower cumulative costs. The baseline methods
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Figure 4: Cumulative cost (IQM) and reach rates of the final converged policies when reward shaping
is used on four selected benchmarks. RC-PPO achieves significantly lower cumulative costs while
retaining comparable reach rates even when compared with baseline methods that use reward shaping.
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Figure 5: On Pendulum, RC-PPO performs an extensive energy pumping strategy to reach the goal
upright position (green line), resulting in vastly lower cumulative energy. On WindField, RC-PPO
takes advantage instead of fighting against the wind field, resulting in a faster trajectory to the goal
region (green box) that uses lower cumulative energy. The start of the trajectory is marked by ■.

(PPO_βH, CPPO_XL) fail to achieve a high reach rate due to the large weights placed on minimizing
the cumulative cost. CRL can reach the goal for simpler environments (Pendulum) but struggles with
more complex environments. However, since goal-conditioned methods do not consider minimize
cumulative cost, it achieves a higher cumulative cost relative to other methods. Other baselines focus
more on goal-reaching tasks while putting less emphasis on the cost part. As a result, they suffer
from higher costs than RC-PPO. We can also observe that RESPO achieves lower cumulative cost
compared to CPPO_XM which shares the same Xthreshold. This is due to RESPO making use of
reachability analysis to better satisfy constraints.

To see how RC-PPO achieves lower costs, we visualize the resulting trajectories for Pendulum and
WindField in Figure 5. For Pendulum, we see that RC-PPO learns to perform energy pumping to
reach the goal in more time but with a smaller cumulative cost. The optimal behavior is opposite in
the case of WindField, which contains an additional constant term in the cost to model the energy
draw of quadcopters (see Appendix F). Here, we see that RC-PPO takes advantage of the wind at the
beginning by moving downwind, arriving at the goal faster and with less cumulative cost.

We also visualize the learned RC-PPO policy for different values of z on the Pendulum benchmark
(see Appendix G.2). For small values of z, the policy learns to minimize the cost, but at the expense of
not reaching the goal. For large values of z, the policy reaches the goal quickly but at the expense of
a large cost. The optimal zopt found using the learned value function Ṽ πθ

ĝ finds the z that minimizes
the cumulative cost but is still able to reach the goal.
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6 Conclusion and Limitations

We have proposed RC-PPO, a novel reinforcement learning algorithm for solving minimum-cost
reach-avoid problems. We have demonstrated the strong capabilities of RC-PPO over prior methods
in solving a multitude of challenging benchmark problems, where RC-PPO learns policies that match
the reach rates of existing methods while achieving significantly lower cumulative costs.

However, it should be noted that RC-PPO is not without limitations. First, the use of augmented
dynamics enables folding the safety constraints within the goal specifications through an additional
binary state variable. While this reduces the complexity of the resulting algorithm, it also means
that two policies that are both unable to reach the goal can have the same value Ṽ πg′ even if one is
unsafe, which can be undesirable. Next, the theoretical developments of RC-PPO are dependent
on the assumptions of deterministic dynamics, which can be quite restrictive as it precludes the
use of commonly used techniques for real-world deployment such as domain randomization. We
acknowledge these limitations and leave resolving these challenges as future work.
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A Optimal Reach Value Function

As shown in (13), we introduce an additional discount factor into the estimation of Ṽ πĝ . It will incur
imprecision on the calculation of Ṽ πĝ defined in Definition 1. In this section, we show that for a large
enough discount factor γ < 1, we could reach unbiased z̃ in phase two of RC-PPO.
Theorem 3. We denote maxx̂∈X̂ {ĝ(x̂)} = Gmax and maximal episode length Tmax. If there exists
a positive value ϵ where

ĝ(x̂) < 0 ⇒ ĝ(x̂) < −ϵ.
Then for any γTmax

1−γTmax
> Gmax

ϵ , for any deterministic policy π satisfies 13. If there exists a trajectory

under given policy π leading to the extended goal region Ĝ. We have
Ṽ πĝ (x̂) < 0.

The proof for Theorem 3 is provided in Appendix C.4.

B GAE estimator Definition

Note, however, that the definition of return (14) is different from the original definition and hence
will result in a different equation for the GAE.

To simplify the form of the GAE, we first define a “reduction” function ϕ(n) : Rn → R that applies
itself recursively to its n arguments, i.e.,

ϕ(n)(x1, x2, . . . , xn) := ϕ(1)
(
x1, ϕ

(n−1)(x2, . . . , xn)
)

where
ϕ(1)(x, y) := (1− γ)x+ γmin{x, y}.

The k-step advantage function Âπ(k)ĝ can then be written as

Â
π(k)
ĝ (x̂t) = ϕ(k)

(
ĝ(x̂t), . . . , ĝ(x̂t+k−1), Ṽ

π
ĝ (x̂t+k)

)
− Ṽ πg (x̂t).

We can then construct the GAE Âπ(GAE)
ĝ as the λk-weighted sum over the k-step advantage functions

Â
π(k)
ĝ : Overall, the GAE estimator can be described as

Â
π(GAE)
ĝ (x̂t) =

1

1− λ

∞∑
k=1

λkÂ
π(k)
ĝ (x̂t).

C Proofs

C.1 Proof for Theorem 1

Proof. We separately consider three elements in augmented state (xT , yT , zT ). First, note that 1b
holds if and only if xT ∈ G. For the second element y, from the definition of the augmented dynamics
4, it holds that

yT = max
i∈{0,...,T}

Ixi∈F (17)

As a result 1c holds if and only if yT = −1. For the third element z, note that zT = z0 −∑T−1
k=0 c(xk, u(xk)). Hence, zT ≥ 0 if and only if z0 ≥

∑T−1
k=0 c(xk, u(xk)).

C.2 Proof for Property 7

Proof. From Definition 7, we know
Ṽ πĝ (x̂) = min

t∈N
ĝ(x̂t | x̂0 = x̂)

= min{ĝ(x̂), min
t∈N+

ĝ(x̂t | x̂0 = x̂)}

= min{ĝ(x̂), Ṽ πg (x̂t+1)}
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C.3 Proof for Theorem 2

We first derive the state value function in a recursive form similar as [62]

Proof.

∇θṼ
πθ

ĝ (x̂) =∇θ

(∑
u∈U

πθ(u | x̂)Q̃πθ

ĝ (x̂, u)

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (, u) + πθ(u | x̂)∇θQ̃
πθ

ĝ (x̂, u)

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (x̂, u)

+ πθ(u | x̂)∇θmin{ĝ(x̂), Ṽ πg (x̂′)}

)

=
∑
u∈U

(
∇θπθ(u | x̂)Q̃πθ

ĝ (x̂, u)

+ πθ(u | x̂)1ĝ(x̂)>Ṽ πθ
g (x̂′)∇θṼ

πθ
g (x̂′)

)

where x̂′ = f̂(x̂, u)

Next, we consider unrolling Ṽ πθ
g (x̂′) under Reachability MDP in Definition 2. We define Pr(x̂→

x̂†, k, πθ) as the probability of transitioning from state x̂ to x̂† in k steps under policy πθ in 2. Note
that 1ĝ(x̂)>Ṽ πθ

g (x̂′) is absorbed using the absorbing state in 2. Then we can get

∇θṼ
πθ

ĝ (x̂) =
∑
x̂†∈X̂

( ∞∑
k=0

Pr
(
x̂→ x̂†, k, π

))∑
u∈U

∇πθ(u | x̂†)Q̃πθ

ĝ (x̂†, u)

∝ Ex̂′∼d′π(x̂),u∼πθ

[
Q̃πθ (x̂′, u)∇θ lnπθ (u | x̂′)

]

C.4 Proof for Theorem 3

Proof. Consider trajectory {x̂0, . . . , x̂T } where x̂T ∈ Ĝ. We consider the worst-case scenario where
ĝ(x̂t) = gmax for t ∈ {0, . . . , T − 1}. Then

Ṽ π(x̂0) = (1− γ)ĝ(x̂0) + γmin{Ṽ π(x̂1), ĝ(x̂1)}
≤ (1− γ)gmax + γṼ π(x̂1)

≤ (1− γ)gmax + γ((1− γ)gmax + γṼ π(x̂1))

≤
T−1∑
i=0

γi(1− γ)gmax + γT Ṽ π(x̂T )

< (1− γT )gmax + γT ϵ

< 0
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D Convergence Guarantee on an Actor-Critic Version of Our Method

In this section, we provide the convergence proof of phase one of our method under the actor-critic
framework. Notice that similar to Bellman equation (13) for Ṽ πĝ . We could also derive the Bellman
equation for Q̃πĝ as

Q̃πĝ (x̂t, ut) = (1− γ)ĝ(x̂t) + γEx̂t+1∼τ,ut+1∼π[min{ĝ(x̂t), Q̃πg (x̂t+1, ut+1)}]

Next, we show our method under the actor-critic framework without GAE estimator in Algorithm 3

Algorithm 3 RC-PPO (Actor Critic)

Require: Initial policy parameter θ0, Q function parameter ω0, horizon T, convex projection operator
ΓΘ, and value function learning rate β1(k), policy learning rate β2(k)

1: for k = 0, 1, . . . do
2: for t = 0 to T-1 do
3: Sample trajectories τt : {x̂t, ut, x̂t+1}
4: Critic update: ωk+1 = ωk − β1(k)∇ωQ̃ĝ (x̂t, ut;ωk) ·
5:

[
Q̃ĝ (x̂t, ut;ωk)−

(
(1− γ)ĝ(x̂t) + γmin

{
ĝ(x̂t), Q̃ĝ (x̂t+1, ut+1;ωk)

})]
6: Actor Update: θk+1 = ΓΘ

(
θk + β2(k)Q̃ĝ (x̂t, ut;ωk)∇θ log πθ (ut | x̂t)

)
7: end for
8: end for
9: return parameter θ, ω

In this algorithm, the ΓΘ(θ) operator projects a vector θ ∈ Rk to the closest point in a compact and
convex set Θ ⊂ Rk, i.e., ΓΘ(θ) = argminθ′∈Θ ∥θ′ − θ∥2.

Next, we provide the convergence analysis for Algorithm 3 under the following assumptions.
Assumption 1. (Step Sizes) The step size schedules {β1(k)} and {β2(k)} have below properties:∑

k

β1(k) =
∑
k

β2(k) = ∞∑
k

β1(k)
2,
∑
k

β2(k)
2 <∞

β2(k) = o(β1(k))

Assumption 2. (Differentiability and and Lipschitz Continuity) For any state and action pair (x̂, u),
Q̃ĝ(x̂, u;ω) and π(x̂; θ) are continuously differentiable in ω and θ. Furthermore, for any state and
action pair (x̂, u), ∇ωQ̃ĝ(x̂, u;ω) and π(x̂; θ) are Lipschitz function in ω and θ.

Also, we assume that X and U are finite and bounded and the horizon T is also bounded by Tmax,
then the cost function c can be bounded by Cmax and g can be bounded within Gmax. We can limit
the space of cost upper bound z ∈ [−Gmax, T · Cmax] instead of R. This is due to ĝ(x̂) = −z for
z ≤ −Gmax. Next, we could do discretization on [−Gmax, T · Cmax] and cost function c to make
the augmented state set X̂ finite and bounded.

With the above assumptions, we can provide a convergence guarantee for Algocrithm 3.
Theorem 4. Under Assumptions 1 and 2, the policy update in Algorithm 3 converge almost surely to
a locally optimal policy.

Proof. We show our algorithm convergence to the optimal policy by utilizing the proof framework of
multi-time scale presented in [7, 14, 15, 26, 73]. Specifically, we have 2 time scales for the critics
and the policy listed in order from fastest to slowest. The overview of each timescale proof step is as
follows:

• First, we prove that the critic parameter almost surely converges to a fixed point ω∗.
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• Second, due to the fast convergence of ω∗, we can show policy paramter θ converge almost
surely to a stationary point θ∗ which can be further proved to be a locally optimal solution.

Step 1: (convergence of the critics ω updates): From the multi-time scale assumption, we know that
ω will convergence on a faster time scale than the other parameters θ. Therefore, we can leverage
Lemma 1 of Chapter 6 of [7] to analyze the convergence properties while updating ωk by treating
θ as fixed constant θk. In other words, the policy are fixed while computing Q̃ĝ(x̂, u). With the
Finite MDP assumption and policy evaluation convergence results of [62], and assuming sufficiently
expressive function approximator (i.e. wide enough neural networks) to ensure convergence to global
minimum, we can use the fact that the bellman operators B which is defined as

B[Q̃ĝ(x̂, u)] = (1− γ)ĝ(x̂) + γEx̂′∼τ,u∼π[min{ĝ(x̂), Q̃ĝ(x̂′, u)}]

is γ-contraction mappings, and therefore as k approaches ∞, we can be sure that Q̃ĝ(x̂, u;ω) →
Q̃ĝ(x̂, u;ω

∗) = Q̃πθ

ĝ (x̂, u). So since ωk converges to ω∗, we prove the convergence of the critic in
Time scale 1.

Step 2: (convergence of the policy πθ update): In Time scale 2, we have∥∥∥Q̃ĝ(x̂, u;ω)− Q̃ĝ(x̂, u;ω
∗)
∥∥∥ → 0 almost surely. Now the update of the policy θ using the

gradient from Algorithm 3 is:

θk+1 = ΓΘ

[
θk + β2(k)

(
∇θL (θ, ωk)|θ=θk

)]
= ΓΘ

[
θk + β2(k)

(
Q̃ĝ (x̂t, ut;ωk)∇θ log π (ut | x̂t; θ)

∣∣
θ=θk

)]
= ΓΘ

[
θk + β2(k)

(
∇θL (θ, ω∗)|θ=θk + δθk+1 + δθϵ

)]
where

δθk+1 =− Ex̂∼D

[
Q̃ĝ(x̂, u;ωk)|u=π(x̂t;θk)∇θ log π(x̂t; θ)|θ=θk

]
+ Q̃ĝ(x̂, u;ωk)|u=ut

· ∇θ log π (x̂t; θ) |θ=θk
and

δθϵ = Ex̂∼D

[
Q̃ĝ(x̂, u;ωk)|u=π(x̂t;θk)∇θ log π(x̂t; θ)|θ=θk

− Q̃ĝ(x̂, u;ω
∗)|u=π(x̂t;θk)∇θ log π(x̂t; θ)|θ=θk

]
Lemma 1: We can first demonstrate that δθk+1 is square integrable. In particular,

E
[
∥δθk+1∥2 | Fθ,k

]
≤ 4

∥∥∇θ log π(u | x̂t; θ)|θ=θk 1π(u|x̂t;θk)>0

∥∥2
∞ ·
∥∥∥Q̃ĝ(x̂, u;ωk)∥∥∥2

∞

≤ 4

∥∥∇θπ(u | x̂t; θ)|θ=θk
∥∥2
∞

min {π (u | x̂t; θk) | π (u | x̂t; θk) > 0}
·
∥∥∥Q̃ĝ(x̂, u;ωk)∥∥∥2

∞

Note that Fθ,k = σ (θm, δθm,m ≤ k) is the filtration for θk generated by different independent
trajectories [14]. From Assumptions 2, finite MDP, bounded cost function c, and goal indication
function g, we can bound the values of the functions and the gradients of functions. Specifically

∥∥∇θπ(u | x̂; θ)|θ=θk
∥∥2
∞ ≤ K1

(
1 + ∥θk∥2∞

)
,∥∥∥Q̃ĝ(x̂, u;ωk)∥∥∥2

∞
≤ Gmax
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where K1 is a Lipschitz constant. Furthermore, note that because we are sampling, π (u | x̂; θk) will
take on only a finite number of values, so its nonzero values will be bounded away from zero. Thus
we can say

1

min {π (a | s; θk) | π (a | s; θk) > 0}
≤ K2

for some large enough K2. Thus using the bounds from these conditions, we can demonstrate

E
[
∥δθk+1∥2 | Fθ,k

]
≤ 4 ·K1 ·K2 ·Gmax

(
1 + ∥θk∥2∞

)
<∞

Therefore δθk+1 is square integrable.

Lemma 2: Secondly, we can demonstrate δθϵ → 0.

δθϵ =Ex̂∼D

[
Q̃ĝ(x̂, u;ωk)|u=π(x̂t;θk)∇θ log π(x̂t; θ)|θ=θk

− Q̃ĝ(x̂, u;ω
∗)|u=π(x̂t;θk)∇θ log π(x̂t; θ)|θ=θk

]
≤ Ex̂∼D

[
4

∥∥∇θπ(u | x̂t; θ)|θ=θk
∥∥2
∞

min {π (u | x̂t; θk) | π (u | x̂t; θk) > 0}
· ∥Q (x̂, u;ωk)−Q (x̂, u;ω∗)∥

]
And because we have ∥Q (x̂, u;ωk)−Q (x̂, u;ω∗)∥ → 0, we can therefore say δθϵ → 0.

Lemma 3: Finally, since ∇̄θJπ(θ)
∣∣
θ=θk

is a sample of ∇θL (θ, ωk)|θ=θk based on the history of
sampled trajectories, we conclude that E [δθk+1 | Fθ,k] = 0.

From the 3 above lemmas, the policy θ update is a stochastic approximation of a continuous system
θ(t) [7], described by an ODE

θ̇ = ΥΘ [−∇θL(θ, ωk)] (18)

in which

ΥΘ [M(θ)] ≜ lim
ψ→0+

ΓΘ(θ + ψM(θ))− ΓΘ(θ)

ψ

or in other words the left directional derivative of ΓΘ(θ) in the direction of M(θ). Using the left
directional derivative ΥΘ [−∇θL(θ, ω)] in the gradient descent algorithm for learning the policy
πθ ensures the gradient will point in the descent direction along the boundary of Θ when the θ
update hits its boundary. Using Step 2 in Appendix A. 2 from [7], we have that dL(θ, ω)/dt =
−∇θL(θ, ω)

T ·ΥΘ [−∇θL(θ, ω)] ≤ 0 and the value is non-zero if ∥ΥΘ [−∇θL(θ, ω)]∥ ̸= 0. Now
consider the continuous system θ(t̄). For some fixed ω, define a Lyapunov function

Lω(θ) = L(θ, ω)− L (θ∗, ω)

where θ∗ is a local minimum point. Then there exists a ball centered at θ∗ with a radius ρ such that
∀θ ∈ Bθ∗(ρ) = {θ |∥θ − θ∗| |≤ ρ} ,Lω(θ) is a locally positive definite function, that is Lω(θ) ≥ 0.
Using Proposition 1.1.1 from [6], we can show that ΥΘ [−∇θL(θ, ω)]|θ=θ∗ = 0 meaning θ∗ is a
stationary point. Since dL(θ, ω)/dt ≤ 0, through Lyapunov theory for asymptotically stable systems
presented in Chapter 4 of [18], we can use the above arguments to demonstrate that with any initial
conditions of θ(0) ∈ Bθ∗(ρ), the continuous state trajectory of θ(t) converges to θ∗. Particularly,
L (θ∗, ω) ≤ L(θ(t), ω) ≤ L(θ(0), ω) for all t > 0.

Using these aforementioned properties and below facts

• ∇θL(θ, ω) is a Lipschitz function (using Proposition 17 from [7])

• the step-sizes of Assumption 1
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• δθk+1 is a square integrable Martingale difference sequence and δθϵ is a vanishing error
almost surely

• θk ∈ Θ,∀k implying that supk ∥θk∥ <∞ almost surely

We can invoke Theorem 2 of chapter 6 in [7] to demonstrate the sequence {θk} , θk ∈ Θ converges
almost surely to the solution of the ODE defined by (18), which additionally converges almost surely
to the local minimum θ∗ ∈ Θ.

E Implementation Details of Algorithms

In this section, we will provide more details about CMDP-based baselines (different between opti-
mization goal with multiple constraints) and other hyperparameter settings like Xthreshold.

E.1 CMDP-based Baselines

In this section, we will clarify the optimization target for CPPO and RESPO under CMDP formulation
of both hard and soft constraints. Recall that our formulation of CMDP is

min
π

Ext,ut∼dπ

∑
t

[
− γtr(xt, ut)

]
(19a)

s.t. Ext,ut∼dπ

∑
t

[
γt1xt∈F × Cfail

]
≤ 0, (19b)

Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
≤ Xthreshold (19c)

We then denote

V πr (xt) := Ext,ut∼dπ

∑
t

[
γtr(xt, ut)

]
V πf (xt) := Ext,ut∼dπ

∑
t

[
γt1xt∈F × Ccost

]
V πc (xt) := Ext,ut∼dπ

∑
t

[
γtc(xt, ut)

]
The optimization goal formulation for CPPO is as follows:

min
π

max
λ

(
L(π, λ) = −V πr (x) + λc · (V πc (x)−Xthreshold) + λf · V πf (x)

)
In this formulation, the soft constraint V πc has the same priority as the hard constraint V πf . This leads
to a potential imbalance between soft constraints and hard constraints. Instead, the optimization goal
for RESPO is as follows:

min
π

max
λ

L(π, λ) =
(
− V πr (x) + λc · (V πc (x)−Xthreshold)

+ λf · V πf (x)
)
· (1− p(x)) + p(x) · V πf (x)

where p(x) denotes the probability of entering the unsafe region F start from state x. It is called
the reachability estimation function (REF). This formulation prioritizes the satisfaction of hard
constraints but still suffers from balancing soft constraints and reward terms.

E.2 Hyperparameters

We first clarify how we set proper Xthreshold for each environment. First, we will run our method
RC-PPO and calculate the average cost, we denote it as caverage. We set Xlow =

caverage

10 , Xmedium =
caverage

3 and Xhigh = caverage. For static lagrangian multiplier β, we set βlo = 0.1 and βhi = 10.
Also, we set Cfail = 20 in every environment.

Note that CRL is an off-policy algorithm, while RC-PPO and other baselines are on-policy algo-
rithms. We provide Table 1 showing hyperparameters for on-policy algorithms and Table 2 showing
hyperparameters for off-policy algorithm (CRL).
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Table 1: Hyperparameter Settings for On-policy Algorithms
Hyperparameters for On-policy Algorithms Values

On-policy parameters
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy coefficient Linear Decay 1e-2 → 0
Optimizer Adam
Discount factor γ 0.99
GAE lambda parameter 0.95
Clip Ratio 0.2
Total Env Interactions 2e7
Actor Learning rate Linear Decay 3e-4 → 0
Reward/Cost Critic Learning rate Linear Decay 3e-4 → 0

RESPO specific parameters
REF Output Layer Activation Function sigmoid
Lagrangian multiplier Output Layer Activation function softplus
Lagrangian multiplier Learning rate Linear Decay 5e-5 → 0
REF Learning Rate Linear Decay 1e-4 → 0

CPPO specific parameters
KP 1
KI 1e-4
KD 1

Table 2: Hyperparameter Settings for Off-policy Algorithms
Hyperparameters for Off-policy Algorithms Values

Off-policy parameters
Network Architecture MLP
Units per Hidden Layer 256
Numbers of Hidden Layers 2
Hidden Layer Activation Function tanh
Entropy target -2
Optimizer Adam
Discount factor γ 0.99
Total Env Interactions 2e6
Actor Learning rate Linear Decay 3e-4 → 0
Critic Learning rate Linear Decay 3e-4 → 0
Actor Target Entropy 0
Replay Buffer Size 1e6 transitions
Replay Batch Size 256
Train-Collect Interval 16
Target Smoothing Term 0.005
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E.3 Implementation of the baselines

The implementation of the baseline follows their original implementations:

• RESPO: https://github.com/milanganai/milanganai.github.io/tree/main/NeurIPS2023/code
(No license)

• CRL: https://github.com/google-research/google-research/tree/master/
contrastive_rl (No License)

F Experiment Details

In this section, we provide more details about the benchmarks and the choice of reward function
r, g, cost function c and Ccost in each environment. Under the sparse reward setting, we apply the
following structure of reward design

r(xt, ut, xt+1) = Rgoal × 1xt+1∈G

where Rgoal is an constant. After doing reward shaping, we add an extra term γϕ(xt+1)− ϕ(xt) and
the reward becomes

r(xt, ut, xt+1) = Rgoal × 1xt+1∈G + γϕ(xt+1)− ϕ(xt)

where γ denotes the discount factor.

Note that we set Rgoal = Ccost = 20 in all the environments. Note that if there is a gap between
max{g(x) | g(x) < 0}, we could get unbiased z̃ during phase two of RC-PPO guaranteed by
Theorem 3. To achieve better performance in phase two of RC-PPO, we set

g(x) = −300

for all x ∈ G to maintain such a gap. Also, we implement all the environments in Jax [10] for better
scalability and parallelization.

F.1 Pendulum

The Pendulum environment is taken from Gym [11] and the torque limit is set to be 1. The state
space is given by x = [θ, θ̇] where θ ∈ [−π, π], θ̇ ∈ [−8, 8]. In this task, we do not consider unsafe
regions and set

G := {[θ, θ̇] | θ · (θ + θ̇ · dt) < 0}
where dt = 0.05 is the time interval during environment simulation. This is for preventing environ-
ment overshooting during simulation.

In the Pendulum environment, cost function c is given by

c(xt, ut, xt+1) =

{
0 if ∥ut∥ < 0.1

8∥u∥2 if ∥ut∥ ≥ 0.1

for better visualization of policies with different energy consumption. g is given by

g(x) =

{
100θ2 if x ̸∈ G
−300 if x ∈ G

F.2 Safety Hopper

The Safety Hopper environment is taken from Safety Mujoco, we add static obstacles in the envi-
ronment to increase the difficulty of the task. We use x to denote the x-axis position of the head of
Hopper, y to be the y-axis position of the head of Hopper. Then the goal region can be described as

G := {(x, y) | ∥[x, y]− [2.0, 1.4]∥ < 0.1}

The unsafe set is described as

F := {(x, y) | 0.95 ≤ x ≤ 1.05, y ≥ 1.3}
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We use x̃thigh, x̃leg, x̃foot to denote the angular velocity of the thigh, leg, foot hinge. The cost
function is described as

c(xt, ut, xt+1) = l(xthight , u1t ) + l(xlegt , u2t ) + l(xfoott , u3t )

where

l(a, b) =

{
0 if ∥a · b∥ < 0.4

0.15a2 · b2 if ∥a · b∥ > 0.4

g is given by

g(x̃) =

{
100
√
(x− 2)2 + 100(y − 1.4)2 − 40 if x̃ ̸∈ G

−300 if x̃ ∈ G

F.3 Safety HalfCheetah

The Safety HalfCheetah environment is taken from Safety Mujoco, we add static obstacles in the
environment to increase the difficulty of the task. We use xfront to denote the x-axis position of the
front foot of Halfcheetah, yfront to be the y-axis position of the back foot of Halfcheetah, xback to
denote the x-axis position of the back foot of Halfcheetah, yback to be the y-axis position of the back
foot of Halfcheetah, xhead to denote the x-axis position of the head of Halfcheetah, yhead to be the
y-axis position of the head of Halfcheetah. Then the goal region can be described as

G := {(xhead, yhead) | ∥[xhead, yhead]− [5.0, 0.0]∥ < 0.2}

The unsafe set is described as

F :={(xfront, yfront) | yfront < 0.25, 2.45 < xfront < 2.55}
∪ {(xback, yback) | yback < 0.25, 2.45 < xback < 2.55}

The cost function is described as
c(xt, ut, xt+1) = ∥ut∥2

g is given by

g(x̃) =

{
100
√

(xhead − 2)2 + (yhead − 1.4)2 − 20 if x̃ ̸∈ G
−300 if x̃ ∈ G

F.4 FixedWing

FixedWing environment is taken from [58] and we follow the same design of F as [58]. We denote
the xPE as the eastward displacement of F16 with given state x. Then the goal region G is given by

G := {x | 1975 ≤ xPE ≤ 2025}

The cost c is given by

c(xt, ut, xt+1) = 4∥ut/[1, 25, 25, 25]∥2

and g is given by

g(x) =

{
∥xPE−2000∥−25

4 if x ̸∈ G
−300 if x ∈ G

F.5 Quadrotor in Wind Field

We take quadrotor dynamics from crazyflies and wind field environments in the urban area from [69].
The wind field will disturb the quadrotor with extra movement on both x-axis and y-axis. There are
static building obstacles in the environment and we treat them as the unsafe region F . The goal for
the quadrotor is to reach the mid-point of the city. We divide the whole city into four sections and
train single policy on each of the sections. We use x ∈ [−30, 30] to denote the x-axis position of
quadrotor, y ∈ [−30, 30] to be the y-axis position of quadrotor.

G := {(x, y) | ∥[x, y]∥ ≤ 4}
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The cost c is given by

c(xt, ut, xt+1) =
∥ut∥2

2

g is given by

g(x̃) =

{
10
√

(x− xgoal)2 + 10(y − ygoal)2 − 40 if x ̸∈ G
−300 if x ∈ G

F.6 PointGoal

The PointGoal environment is taken from Safety Gym [54] We implement PointGoal environments
in Jax. In Safety Gym environment, we do not perform reward-shaping and use the original reward
defined in Safety Gym environments. In this case, the distance reward is set also to be 20 in order to
align* withCgoal andCcost. Different from sampling outside the hazard region which is implemented
in Safety Gym, we allow Point to be initialized within the hazard region. We use x to denote the
x-axis position of Point, y to be the y-axis position of Point, xgoal to denote the x-axis position of
Goal, and ygoal to denote the y-axis position of Goal. The goal region is given by

G := {(x, y) | ∥[x, y]− [xgoal, ygoal]∥ ≤ 0.3}

The cost c is given by

c(xt, ut, xt+1) =
∥ut∥2

2

g is given by

g(x̃) =

{
100
√

(x− xgoal)2 + (y − ygoal)2 − 30 if x ̸∈ G
−300 if x ∈ G

F.7 Experiment Harware

We run all our experiments on a computer with CPU AMD Ryzen Threadripper 3970X 32-Core
Processor and with 4 GPUs of RTX3090. It takes at most 4 hours to train on every environment.

G Additional Experiment Results

We put additional experiment results in this section.

G.1 Additional Cumulative Cost and Reach Rates

We show the cumulative cost and reach rates of the final converged policies for additional environ-
ments (F16 and Safety Hopper) in Figure 6.

G.2 Visualization of learned policy for different z

To obtain better intuition for how the learned policy depends on z, we rollout the policy choices of z0
in the Pendulum environment and visualize the results in Figure 7.
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Figure 6: Cumulative cost and reach rates of the final converged policies.
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Figure 7: Learned RC-PPO policy for different z on Pendulum. For a smaller cost lower-bound z,
cost minimization is prioritized at the expense of not reaching the goal. For a larger cost lower-bound
z, the goal is reached using a large cumulative cost. Performing rootfinding to solve for the optimal
zopt automatically finds the policy that minimizes cumulative costs while still reaching the goal.

H Broader impact

Our proposed algorithm solves an important problem that is widely applicable to many different
real-world tasks including robotics, autonomous driving, and drone delivery. Solving this brings
us one step closer to more feasible deployment of these robots in real life. However, the proposed
algorithm requires GPU training resources, which could contribute to increased energy usage.

25


	Introduction
	Related Works
	Problem Formulation
	Reachability Analysis for Reach-Avoid Problems
	Reachability Analysis for Minimum-cost Reach-Avoid Problems

	Solving with Reinforcement Learning
	Experiments
	Main Experiments
	Compare with Baselines with Reward Shaping Term

	Conclusion and Limitations
	Optimal Reach Value Function
	GAE estimator Definition
	Proofs
	Proof for Theorem 1
	Proof for Property 7
	Proof for Theorem 2
	Proof for Theorem 3

	Convergence Guarantee on an Actor-Critic Version of Our Method
	Implementation Details of Algorithms
	CMDP-based Baselines
	Hyperparameters
	Implementation of the baselines

	Experiment Details
	Pendulum
	Safety Hopper
	Safety HalfCheetah
	FixedWing
	Quadrotor in Wind Field
	PointGoal
	Experiment Harware

	Additional Experiment Results
	Additional Cumulative Cost and Reach Rates
	Visualization of learned policy for different z

	Broader impact

