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Abstract—Environments with multi-agent interactions often
result a rich set of modalities of behavior between agents due
to the inherent suboptimality of decision making processes
when agents settle for satisfactory decisions. However, existing
algorithms for solving these dynamic games are strictly unimodal
and fail to capture the intricate multimodal behaviors of the
agents. In this paper, we propose MMELQGames (Multimodal
Maximum-Entropy Linear Quadratic Games), a novel constrained
multimodal maximum entropy formulation of the Differential
Dynamic Programming algorithm for solving generalized Nash
equilibria. By formulating the problem as a certain dynamic game
with incomplete and asymmetric information where agents are
uncertain about the cost and dynamics of the game itself, the
proposed method is able to reason about multiple local gener-
alized Nash equilibria, enforce constraints with the Augmented
Lagrangian framework and also perform Bayesian inference on
the latent mode from past observations. We assess the efficacy of
the proposed algorithm on two illustrative examples: multi-agent
collision avoidance and autonomous racing. In particular, we
show that only MMELQGames is able to effectively block a rear
vehicle when given a speed disadvantage and the rear vehicle can
overtake from multiple positions.

I. INTRODUCTION

Planning in multi-agent scenarios is a challenging task –
actions taken by any robot cannot be considered in isolation
and must take the response from other agents into account.
Classical approaches to tackling this problem adopt a predict-
then-plan architecture, where the actions of other agents are
assumed to be independent of the ego-agent’s actions. However,
this assumption breaks down in the context of multi-agent
games such as racing, surveillance or autonomous driving where
agents may have conflicting interests and it is advantageous to
manipulate the behavior of other agents.

Recent works have introduced game-theoretic formulations
to address this problem [4, 12, 16, 20, 28, 32, 33]. By assuming
that agents act rationally, the optimal actions of other agents
can be predicted by solving for the Nash equilibria of the
non-cooperative game assuming that the true objectives of
other agents are known. However, in practice humans face
cognitive limitations and seek decisions that are satisfactory
but often suboptimal, a phenomenon described by the concept
of “bounded rationality” [29].

This disconnect is often modeled using the the Maximum
Entropy (MaxEnt) framework which models actions of agents
as being stochastic in nature. MaxEnt has been successfully
applied to diverse areas including inverse reinforcement learn-
ing [20, 37], forecasting [9], and biology [6]. In particular,
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Fig. 1: Two-agent autonomous racing scenario where the rear
agent (green) has a higher maximum velocity than the lead
agent (blue). Different highlighted colors representing different
planned modes. The planned trajectory for the ego agent is
shown as a thin blue line. The lead agent is able to reason
about and correctly infer the different modes that the rear agent
could take. Furthermore, when the ego agent is uncertain about
which mode the rear agent will choose, it hedges against both
possibilities by planning a path down the middle.

Mehr et al. [20] propose a game-theoretic maximum entropy
algorithm for finding nash equilibria policies to dynamic games
via an extension of the iLQGames method [12].

However, these methods consider only a single local mini-
mum. As a result, the resulting policies are unimodal and fail
to capture the multimodal nature of solutions under the MaxEnt
framework. In the presence of multiple local minima, the true
maximum-entropy policy will be multimodal, with one mode
corresponding to each local minimum. However, computing
expectations over multimodal policies in multi-agent settings
quickly leads to combinatorial explosion and is computationally
intractable when solving for multimodal Nash equilibria.

By considering a novel MaxEnt dynamic game with in-
complete information and information asymmetry, we convert
the previous challenge into that of solving a POMDP for the
ego agent where the discrete latent variable corresponds to
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different local generalized MaxEnt Nash equilibria found by
running a constrained version of Maximum Entropy Linear
Quadratic GAMES (MELQGames) in parallel. This approach
further allows for Bayesian inference over the discrete latet
variable by considering past observations of controls from
non-ego agents.

The main contributions of our work are threefold:
• We propose the constrained MaxEnt dynamic game setting

to handle bounded rationality in decison making under
inequality constraints and extend MELQGames to solve
generalized Nash equilibrium.

• We consider a novel MaxEnt dynamic game with in-
complete and asymmetric information. We provide a a
computationally efficient solution that allows for Bayesian
inference of the latent mode when the underlying control
policies are multimodal in nature.

• We showcase the benefits of the proposed algorithm
in simulation, including an autonomous racing exam-
ple. The results demonstrate the superiority of Multi-
modal Maximum Entropy Linear Quadratic GAMES
(MMELQGames) against other game theoretic formula-
tions in terms of successfully predicting agents behavior
in dynamic settings.

II. PROBLEM SETUP

In this section, we introduce the constrained MaxEnt dy-
namic game and the corresponding Generalized Nash Equilib-
rium Problem (GNEP).

A. Discrete Dynamic Games and Generalized Nash Equilibria

We consider a discrete dynamic game with N players with
joint controls ut = [u1

t , . . . , u
N
t ] = [ui

t,u
¬i
t ] ∈ Rnu , where ui

t

denotes the control input of player i and we use u¬i
t to denote

the controls excluding the ith agent. We denote xt ∈ Rnx the
joint state of the system at timestep t which evolves under the
discrete-time dynamics

xt+1 = f(xt, u
1
t , . . . , u

N
t ) = f(xt,ut). (1)

Each agent’s objective is to minimize a corresponding cost
function J i in finite-horizon T with running cost li and terminal
cost Φi, where U = [u1, . . . ,uT−1] denotes a trajectory

J i(U) = Φi(xT ) +

T−1∑
t=1

li(xt,ut). (2)

The goal of agent i is to choose controls U i that optimize J i

while respecting inequality constraints hi:

min
ui

J i(U), s.t. hi(U) ≤ 0. (3)

Note that both the objective function and the constraints are
a function of U i and U¬i. Due to the presence of constraints
hi which may couple agent i’s feasible control set to other
agent’s controls U¬i, (3) is a GNEP [10]. Let

U i(U¬i) = {U i|hi(U) ≤ 0}, (4)

denote the feasible control set for agent i given the controls
of other agents U¬i. Solving an (open loop) GNEP amounts
to finding controls U∗ such that for each agent i,

J i(U i∗,U¬i∗) ≤ J i(U i,U¬i∗), ∀U i ∈ U i(U¬i). (5)

However, since solving for the global GNEP is in general
intractable, we instead look for local GNEP where (5) is
satisfied for all U i within a local neighborhood of the optimal
U∗.

B. Maximum Entropy Dynamic Games

Although the (global) Nash equilibria is a powerful concept,
achieving Nash equilibria requires the assumption that all
cost functions are known exactly and that each agent acts
rationally by solving the GNEP exactly. However, often times
we only have an approximation of the cost function for the
non-ego agents and other agents may only act with approximate
solutions of the GNEP. To take these stochasticities into
account, we take a relaxed control approach and consider a
stochastic control policy πi(ui|x) with the same deterministic
dynamics as in (1). Let Ep[·] denote the expectation with
respect to a distribution p. We introduce an entropy term to
the original objective (2) and consider the expected cost under
all agent’s policies πi:

J i(πi) = Eπ

[
Φi(xT ) +

T−1∑
t=1

(
li(xt,ut)− αH[πi(·|xt)]

)]
,

(6)
where α > 0 is a temperature term and H[π] is the Shannon
entropy of π defined as

H[π] = −Eπ[log π] = −
∫

π(u) log π(u) du. (7)

The resulting GNEP is then formulated similarly to the deter-
ministic case, except that we only require that the constraints
hi hold for the mean controls:

min
πi

J i(U), s.t. hi(Eπ[U]) ≤ 0. (8)

With (8), the task is now to find a stochastic policy πi∗ such
that the following holds for all πi within a neighborhood of
πi∗:

J i(πi∗, π¬i∗) ≤ J i(πi, π¬i∗), πi ∈ Π(π¬i∗), (9)

where Π(π¬i∗) := {πi|hi(Eπ[U]) ≤ 0}.

III. ALGORITHMS FOR SOLVING MAXIMUM ENTROPY
DYNAMIC GAMES

In this section, we now derive algorithms for solving the
MaxEnt Dynamics Games introduced in the previous section.



A. Unconstrained Dynamic Programming

We first consider the unconstrained case for simplicity.
Defining the value function for agent i given the policies
of other agents π¬i to be

V i(x) = inf
πi

{
J i(x, πi, π¬i)

}
, (10)

applying dynamic programming results in Bellman’s equation:

V i(x) = inf
πi

{
Eπ

[
li(x,u) + V i′(f(x,u)

]
− αH[πi(·|x)]

}
.

(11)
In (11) and below we omit the time index t for nonterminal
times for simplicity and use V i′(f(x,u)) to denote the value
function for agent i at the next timestep.

It is well known that the optimal policy πi∗ that solves the
infimum in (11) is the Gibbs distribution [34, 15]

πi∗(ui|x) = 1

Zi
exp

(
− 1

α
Eπ¬i

[
V i′(f(x,u)) + li(x,u)

])
,

(12)
where Zi denotes the partition function

Zi :=

∫
exp

(
− 1

α
Eπ¬i

[
V i′(f(x,u)) + li(x,u)

])
dui.

(13)
Although we have obtained a closed-form expression for πi∗

in (12), it is defined in terms of π¬i which is unknown. Hence,
unlike the optimal control case, we must solve a system of
equations for each agent to find πi∗ and π¬i∗.

B. Unconstrained MELQGames

In this section, we propose using DDP to solve for Nash
Equilibria of MaxEnt dynamic games and derive the un-
constrained MELQGames algorithm similar to iLQGames in
[12]. For notational simplicity, we will drop the second-order
approximation of the dynamics as in iterative Linear Quadratic
Regulator (iLQR) in our description of Differential Dynamic
Programming (DDP). The dropped second-order dynamics
terms can easily be added back in the derivations below. We
refer readers to [19, 17, 12] for a detailed overview of the
vanilla DDP, iLQR and iLQGames algorithms.

The DDP algorithm consists of a forward pass and a
backward pass. The forward pass simulates the dynamics
forward in time obtaining a set of nominal state and control
trajectories (x̄0:T , ū0:T−1), while the backward pass solves the
Bellman equation with a 2nd order approximation of the costs
and dynamics equations around the nominal trajectories. The
boundary conditions for the value functions V i for each agent
are obtained by performing a 2nd order Taylor expansion of
the terminal costs Φi:

V i
xx,T = Φi

xx, V i
x,T = Φi

x, VT = = Φi, (14)

where we follow the notation in DDP literature by denoting
partial derivatives via subscripts.

Additionally, we perform a quadratic approximation of the
costs and linear approximation of the dynamics around a

nominal trajectory (X̄, Ū) , where X = [x0, . . . ,xT ] denotes
a trajectory of states

li(x,u) ≈ li +

[
lix
liu

]T [
δx
δu

]
+

1

2

[
δx
δu

]T [
lixx lixu
liux liuu

] [
δx
δu

]
,

f(x,u) ≈ f + fxδx+ fuδu, (15)

where we have defined δx = x− x̄ and δu = u− ū.
Let Qi denote the terms inside the expectation in Bellman’s

equation (11)

Qi(x,u) := li(x,u) + V i′(f(x,u)). (16)

Then, Qi for the approximated system is quadratic:

Qi(x,u) = V̄ i + δQi, (17)

δQi :=

[
Qi

x

Qi
u

]T [
δx
δu

]
+

1

2

[
δx
δu

]T [
Qi

xx Qi
xu

Qi
ux Qi

uu

] [
δx
δu

]
. (18)

with V̄ i := li(x̄, ū) + V i′(f(x,u)). The derivation and full
expressions for the partial derivatives of Qi are included in
Appendix A. Performing a change of variables δu = u− ū on
πi and taking out terms that not functions of δui, the infimum
in the Bellman equation (11) simplifies to

inf
πi

∫
πi(δui)

{(
Qi

ui +Qi
uixδx+Qi

uiu¬iEπ¬i

[
δu¬i

])T

δui

+
1

2
δuiTQi

uiuiδui + α log πi(δui)

}
dδui, (19)

Since the expression above is now quadratic in δui for each
agent i, the coupled systems of equations can be solved as
shown in the following lemma.

Lemma 1 (Optimal MELQGames Policy). The optimal policy
πi∗ (in the Nash equilibria sense) which solves (19) for each
agent i has the form

πi∗ = Zi−1
exp

(
−α

2
(δui−δui∗)TQi

uiui(δui−δui∗)
)
, (20)

where δui∗ is the solution to the following system of equations

0 = Q̂uuδu
∗ +Quxδx+Qu, δu∗ = k +Kδx, (21)

and the matrix Q̂uu ∈ Rnu×nu is obtained by vertically
stacking the row vectors Qi

uiu for each i ∈ {1, . . . , N}:

(Q̂uu)
T :=

[
(Q1

u1u)
T . . . (QN

uNu)
T
]T

. (22)

We defer the proof of Lemma 1 to the appendix in
Appendix B. Note that the optimal policy πi∗ is Gaussian
distribution with mean δui∗ and covariance matrix Σi =
α(Qi

uiui)−1, where δui∗ has the same expression as in the
iLQGames case. Additionally, as α→ 0, πi∗ converges to the
delta distribution centered on δui∗. Information from the value
function is incorporated in the policy in both the mean and the
covariance as the covariance is higher along eigenvectors of
Qi

uiui which have small eigenvalues. Fig. 2 illustrates sampled
trajectories from the optimal MaxEnt Nash equilibria for a
single agent with triple integrator dynamics. The trajectories
have a tighter distribution in the middle where the cost function,
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Fig. 2: Sampled trajectories from the stochastic policy obtained
from solving the MaxEnt Nash equilibria (20) for a single agent.
The covariance of the MaxEnt policy reflects the curvature of
the cost landscape with a tighter distribution of position in the
middle than at the ends.

shown in the contour plot, has a much higher curvature. Also,
the terminal quadratic cost is higher along the direction of the
x-axis, causing the trajectories near the target (yellow star) to
have a lower variance along the x-axis.

We next substitute equation (20) from Lemma 1 into the
Bellman equation (19) to derive the update equations for the
value function, shown in the following lemma.

Lemma 2 (MELQGames Value Function Update). Suppose
the infimum in the Bellman equation (11) is solved with policy
πi∗ with mean δu = k +Kδx according to Lemma 1. Then,
the value function using for agent i has the form

V i(x) = Eδu∼π̃

[
li(x,u) + V i′(f(x,u)

]
− αH[π̃i], (23)

=
(
V i + V i

H

)
+ V i

x

T
δx+

1

2
δxTV i

xxδx, (24)

where the terms V i, V i
H , V i

x and V i
xx have the form

V i = V̄ i +Qi
uk +

1

2
kTQi

uuk, (25)

V i
H =

α

2

(
log|Qi

uiui | − nui log(2πα)
)

+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

]
,

(26)

V i
x = Qi

x +KTQi
uuk +KTQi

u +Qi
xuk, (27)

V i
xx = Qi

xx +KTQi
uuK+KTQi

ux +Qi
xuK. (28)

Again, we defer the proof of Lemma 2 to the appendix in
Appendix C.

Note that the update rules for V i, V i
x and V i

xx are exactly the
same as in iLQGames [12], with the only difference being the
addition of the V i

H term resulting from the maximum entropy
term. This term only depends on Qi

uiui and approaches 0 as
α→ 0. Since we take Qi

uiui to be constant during each iteration
of MELQGames, V i

H is not a function of x. Consequently,
the backward pass of MELQGames can be performed by
additionally computing V i

H and Σi in the backward pass of
iLQGames. Also, note that unlike the optimal control case
where we can simplify the value function update (25)–(28)
by substituting the definition of k and K to cancel out terms,
this does not hold in the dynamic games case. This is because

Qi
uu (Hessian of Qi) does not equal to Q̂uu (stacked rows of

Qi
uiu) in general.

C. Constrained MELQGames via Augmented Lagrangian

To incorporate constraints, we use the augmented Lagrangian
framework similar to the approach in ALGames [4], except
we choose to use the DDP style unconstrained optimizer
as opposed to Newton’s method. Let us denote by Li the
augmented Lagrangian for agent i. Then,

Li
A(π, λ; ρ) = J i(π) +

ρ

2

∑
j

max

(
0, (hi)j(E[U]) +

λi
j

ρ

)2

.

(29)
where ρ > 0 denotes the penalty parameter and λi

j > 0 denotes
the Lagrange multiplier corresponding to the jth constraint
(hi)j for agent i. Since each agent may in general have a
different number of constraints, the Lagrange multipliers are
specific to each agent’s constraints.

If the optimal Lagrange multipliers λi∗
j were known, then for

a sufficiently large value of ρ the minimizer of the augmented
Lagrangian Li

A would be a local minimum of the constrained
problem [21, 25]. To update the dual parameters λi

j , we perform
the following dual-ascent step

(λi
j)

+ ← max(0, λi
j + ρ(hi)j(E[U]). (30)

where we use the + to denote the new λ. Intuitively, the above
update can be seen as an approximation to the optimal Lagrange
multipliers λi∗

j . Let IA denote the set of active constraints, and
suppose that the Lagrange multipliers for all inactive constraints
are zero such that

j ̸∈ IA =⇒ (hi)j +
λi
j

ρ
< 0. (31)

Then, if π is a minimizer of Li
A then

0 = ∇uiLi
A = ∇uiJ i +

∑
j∈IA

[
ρ(hi)j + λi

j

]
∇ui(hi)j , (32)

and hence (λi
j)

+ = ρ(hi)j + λi
j is a good approximation to

the Lagrange multiplier of the original constrained problem.
To maintain dual feasibility of the Lagrange multipliers, we
project them by taking the positive part.

Alternatively, the Augmented Lagrangian method can be
viewed as projected steepest ascent applied to the dual problem
of (5) where ρ plays the role of the step size in (30). Indeed,
convergence rate results for Augmented Lagrangian methods
show that under suitable conditions (ex. Linear Independent
Constraint Qualification (LICQ) and Second-order Sufficient
Optimality Condition (SOSC) are satisfied at the local minima),
the Lagrange multipliers converge linearly [21, 25] with rate

∥(λi
j)

+ − λi∗
j ∥

∥λi
j − λi∗

j ∥
≤ M

ρ
, (33)

for some constant M . Hence, larger values of ρ should
theoretically result in faster convergence of the Lagrange
multipliers. However, values of ρ that are too large may
make the unconstrained problem ill-conditioned and slow down



convergence [21, 25]. Hence, Augmented Lagrangian methods
usually advocate for increasing ρ by some factor γ > 0 if a
sufficient decrease condition on some feasibilty metric such as

V :=

∥∥∥∥∥min

{
−(hi)j ,

λi
j

ρ

}∥∥∥∥∥, (34)

has not been met [2].
The constrained MELQGames algorithm consists of an

iterative scheme where we alternate approximately solving
the (unconstrained) Nash equilibria for cost functions Li

A and
updating the Lagrange multipliers λi

j with (30). If the metric
V has not decreased by more than some τ ∈ (0, 1) since the
last dual update, we increase ρ.

We now show in the following lemma that if the augmented
Lagrangian MELQGames converges, the solution is a local
GNEP.

Lemma 3. Suppose that the augmented Lagrangian
MELQGames converges to a tuple (π∗, λi

j , ρ) for some ρ > 0
which satisfies dual feasibility of λ, LICQ and SOSC. Then,
π∗ is a Generalized Nash Equilibrium (GNE) for (5).

We defer the proof of Lemma 3 to Appendix D.

IV. EXTENSIONS TO MODELING MULTIMODALITY

The vast majority of existing works that investigate game
theoretic multi-agent interactions consider unimodal behaviors
[4, 11, 12, 20, 31, 36]. However, this may not be enough when
the true value function is not unimodal, a common situation
that can arise from nonconvex dynamics, cost functions or
constraints. In this section, we first outline a computational
challenge for tackling the problem of multimodality in dynamic
games. We then propose a computationally efficient multimodal
extension to MELQGames by reformulating the problem as
an incomplete information games with information asymmetry
and show how our formulation can additionally be used for
Bayesian inference of the latent mode.

In this paper, we focus our attention on multi-agent inter-
actions where multimodality is induced by uncertainty about
multimodal behavior of non-ego agents despite having unimodal
best-responses. We leave extensions to situations where the
ego agent has a multimodal best-response by considering
approaches such as compositionality [30] as future work.

One of the biggest challenges for handling multimodality
with multiple agents is that computational costs can quickly
become unfeasible due to the combinatorial explosion when
accounting for the interactions between all agents. To see
this, consider a game with N agents where each agent
has a policy with A different modes. Evaluating the Nash
equilibrium requires evaluating the expectation over all policies
for all timesteps t = 0, . . . , T − 1, resulting in a total of
O(T AN ) evaluations of the cost function and dynamics. This
combinatorial explosion is computationally intractable for any
kind of realtime planning.

A. Multimodal Dynamic Games via Information Asymmetry
We now propose a method for tackling the challenges

mentioned above. To start, we refine our problem setup and
identify one agent as the “ego” agent. Given that many
applications for planning have the goal of controlling an agent,
this is not an unreasonable assumption. From hereon after,
we denote the ego agent with index 1 and use ¬1 to refer to
non-ego agents.

Consider a set of A different local (generalized) Nash
equilibria with {(Xa,Ua)}Aa=1 and let a ∈ {1, . . . , A} be
a discrete latent random variable that determines the nominal
trajectory around which the cost functions and dynamics are
approximated. We now consider an extension of the maximum
entropy dynamic game (8), where all agents except for the ego
agent have full knowledge of the value of a and are playing
the corresponding optimal policy πa. However, the non-ego
agents incorrectly believes that the ego agent knows what the
true mode is. This is now a dynamic game with incomplete
information since the ego agent only has a belief of what the
true game is but does not know what the true dynamics nor
cost are. However, since the non-ego agents know what the
true mode is, their actions act as a signal for the ego agent and
allow the ego-agent to update its belief using this information.

In the theory of games with incomplete information, a state
of the world ω fully defines a possibility of the true cost
function and dynamics of the game [18]. Uncertainty over the
true state of the world ω∗ implies uncertainty over what game
is being played. Let Y be a finite set containing all possible
states of the worlds and pi : Y → ∆(Y ) be the belief of each
agent mapping each state of the world ω ∈ Y to a probability
distribution over Y .

For our problem, let ωa,s and ωa,m for a = 1, . . . , A denote
different states of the world such that when ω∗ ∈

{
ωa,s, ωa,m

}
,

the true cost and dynamics that correspond to the approximated
costs and dynamics around the local (generalized) Nash
equilibrium (x̄a, ūa). The “s” and “m” here can be taken
to mean “single” and “multi”. We now define our set Y as

Y := {ω1,s, . . . , ωA,s, ω1,m, . . . , ωA,m}. (35)

Let 1 denote the indicator function and pa denote the
ego agent’s prior over the modes a with support on the set
{ωa,m}Aa=1. We define the beliefs of the ego agent p1 and
non-ego agents p¬1 as

p1(ω) =

{
1ωa,s(ω), ω = ωa,s, a ∈ {1, . . . , A}
pa(ω), ω = ωa,m, a ∈ {1, . . . , A}

, (36)

p¬1(ω) =

{
1ωa,s(ω), ω = ωa,s, a ∈ {1, . . . , A}
1ωa,s(ω), ω = ωa,m, a ∈ {1, . . . , A}

, (37)

To give intuition to the above game setup, note that each mode
a is associated with two world states: ωa,s and ωa,m. When
the true state ω∗ is at ωa,s, all agents correctly believe that the
state is ωa,u. However, when ω∗ = ωa,m, the non-ego agents
incorrectly believe that the true state is ωa,s while the ego
agent correctly believes that the true state lies is in the set
{ωa,m} but is unsure which is the correct one.



With the above setup, we can use tools from game theory
to gain intuition into the belief-structure of this game, namely
what each agent believes is true, what each agent believes other
agents believe is true and so on [18].

Definition 1 (Belief Operator). Let Bi denote the belief
operator such that for any event A ⊆ Y

BiA := {ω ∈ Y : pi(A|ω) = 1}, (38)

and the conditional belief pi(A|ω) is defined as

pi(A|ω) := Epi(ω)[1A]. (39)

In other words, ω ∈ BiA means that at ω, event A obtains
according to agent i’s belief in the sense that at least one of
ω ∈ A corresponds to the true state. We next define the concept
of common belief [18]:

Definition 2 (Common Belief). Let A ⊆ Y be an event and
ω ∈ Y . The event A is common belief at state ω if every agent
believes that A obtains, every agent believes that every agent
believes that A obtains, and so on. In other words, for every
finite sequence i1, . . . , iL of agents:

ω ∈ Bi1 . . . BiLA, (40)

In particular, the event Y is common belief among the agents,
i.e., each agent knows that the true world state ω must be an
element of Y .

Using Definition 1 and Definition 2, we now precisely
define the key property of the dynamic game — it is common
knowledge that the non-ego agents believes that the ego agent
knows the mode.

Lemma 4. Let E = {ωa,s}Aa=1 denote the event that the
ego agent knows the correct mode with probability 1. Then,
for all i ̸= 1, ω ∈ BiE, i.e. all non-ego agents believe that
the ego agent knows the mode perfectly. Furthermore, it is
common belief that BiEa for all i ̸= 1. In particular, the ego
agent (correctly) believes that all non-ego agents (incorrectly)
believes that it knows the correct mode.

We delegate the proof of Lemma 4 to Appendix E. Further-
more, we refer the interested reader to Maschler et al. [18] for
more information on belief spaces and games with incomplete
information. The above lemma shows how this choice of
information asymmetry simplifies computation. Namely, since
each non-ego agent believes that the ego-agent knows the
mode perfectly, each non-ego agent’s control will exactly be
the Nash-equilibria control in the unimodal case.

Finally, we introduce the concept of a (local) Bayesian
Nash equilibrium. This is a generalization of the classical
(generalized) Nash equilibrium to the incomplete information
case, where the expectation of an agent’s cost with respect to
its own belief is used [18]:

Definition 3 (Bayesian Nash equilibrium). A policy π∗ is a
Bayesian Nash equilibrium if, for all agents i,

Epi

[
J i(πi∗, π¬i∗)

]
≤ Epi

[
J i(πi, π¬i∗)

]
, πi ∈ Π(π¬i∗),

(41)

xt

π1
t u1

t

π¬1,a
t u¬1

t

l1,at

at

Fig. 3: Graphical model of the POMDP for the ego agent with
corresponding value function (42). The state xt and non-ego
agent controls u¬1

t are observed variables, while the computed
set of non-ego policies π¬1,a

t is dependent on the partially
observable discrete latent mode a. The latent mode a also
affects the true cost function l1,at and the dynamics for the
next state xt+1.

where the expectation is taken with respect to agent i’s belief
of the world state ω∗ ∈ Y .

As a result, when ω∗ = ωa,s, since all agents know the mode
a, the optimal π∗ simply corresponds to the optimal policy πa

for the generalized Nash equilibrium found previously. When
ω∗ = ωa,m, the non-ego agents believe that the true state is
still ωa,s and hence the optimal policy is still π¬i,a. On the
other hand, for ω∗ = ωa,m, although the ego-agent is uncertain
about the true value of a, it knows via Lemma 4 that the non-
ego agents will play π¬i,a. Furthermore, the controls of the
non-ego agents u¬i give information about what the true value
of a is. Hence, the problem of computing the Bayesian Nash
equilibrium πi∗ reduces to the problem of solving a Partially
Observable Markov Decision Process (POMDP) where the
belief space is over the latent variable a and the observations o
are the observed controls of the non-ego agents. The conditional
dependencies for the POMDP are shown in the graphical model
in Fig. 3. By using the standard belief-space approach to solve
the POMDP, the Bellman equation takes the form

V 1(x, bt) = inf
π1

Eπ

[
Ebt

l1,a(x,u)+Eπ¬1V 1′(f(x,u), bt+1

)]
,

(42)
where bt+1 refers to the updated belief for the next timestep
via Bayesian filtering:

bt+1(a) ∝ π¬1(u¬1|a) bt(a). (43)

While solving for general POMDPs is computationally un-
tractable [23], there exist computationally efficient methods for
solving POMDPs over discrete latent spaces by using a DDP-
based approach [24]. However, to simplify the implementation
and presentation of this work, we choose to bypass the
problem of solving the full POMDP by making the following
assumption.



Assumption 1. The ego agent will be informed of the true
mode a after one timestep at t = 1.

With this assumption, the value functions for t ≥ 1 are
known and correspond to the value functions V 1,a for each
mode a of the found local Nash equilibrium. Hence, the
Bellman equation at t = 0 reads

V 1 = inf
π1

Eb0,π

[
l1,a(x,u) + V 1,a′(f(x,u))]− αH[π1],

= inf
π1

{
Eπi

[1
2
u1TQ̃1

u1u1u1 +
(
Q̃1

u1 + Q̃1
u1x

)T

ui
]

+ c− αH[π1]

}
, (44)

where b0 ∈ ∆(Y ) denotes the ego agent’s prior belief of the
true mode, c encapsulates all terms that are constant with
respect to u1, and

Q̃1
u1u1 := Eb0

[
Q1,a

u1u1

]
, Q̃1

u1x := Eb0

[
Q1,a

u1x

]
, (45)

Q̃1
u1 := Eb0

[
Q1,a

u1 −Q1,a
u1u1 ū

1,a −Q1,a
u1xx̄

a
]
. (46)

Consequently, the optimal policy π1 corresponds to the Gibbs
distribution and is solved in the same way as in MELQGames
Lemma 1.

Choices of the prior distribution: There are many valid
choices for the prior distribution on the modes b0. If no prior
information on the non-ego agents is known, one choice is to
choose b0 as the maximum entropy distribution that minimizes
the sum of the value functions for each agent:

b0(a) = inf
p
Ea∼p

[
N∑
i=1

V i,a(x0)

]
− αH[p]. (47)

With this prior, modes that result in lower costs for all agents
will have higher probabilities over modes that have high costs
for all agents. However, in the context of planning for an ego
agent, this may favor local minima which are bad for the ego
agent when better alternatives exist.

Alternatively, we can bias the selection of modes to ones
which are favorable to the ego-agent by choosing b0 as the
maximum entropy distribution that minimizes the sum of the
ego agent’s value functions

b0(a) = p(a|x0) = inf
p
Ea∼p

[
V 1,a(x0)

]
− αH[p]. (48)

B. Latent Mode Bayesian Inference via MaxEnt

In a MPC context, we can improve on our choices of the
prior since the controls of the non-ego agents from previous
timesteps act as signals for the true mode a. By observing
them, the ego agent can form a more accurate estimate of b0.
For simplicity, we assume that the observations of non-ego
agent’s controls are noiseless, though this can be generalized
to the noisy case in a Bayesian fashion by incorporating an
observation model. Suppose that the controls û¬1 := u¬1

−k:−1

and optimal policies {π¬1,a}Aa=1 for all non-ego agents from

Algorithm 1 MMELQGames

1: Initialize {π}Ãa=1 with random policy.
2: Initialize buffer of non-ego control observations U .
3: repeat
4: {(Xa, πa)}Ãa=1 ← Find Modes
5: π1 ← Solve Ego Agent POMDP
6: Execute π1 by sampling or taking the mean control
7: Observe non-ego controls u¬1 and add to U
8: Shift π by one timestep for warmstarting next iteration

the past k timesteps are known. Then, the posterior on those
previous controls can be used for our estimate of b0:

b0(a) := p(a|û¬1) ∝ p(a)

−1∏
t=−k

p(u¬1
t |a), (49)

where p(a) is chosen to be the prior (48) from the previous
subsection that biases towards modes that are favorable to the
ego-agent. With this choice of prior, modes which describe the
controls of non-ego agents and are beneficial to the ego-agent
will have high probability.

When computing the posterior in (49), it is assumed that
all of the controls in û¬1 correspond to the same mode a.
While one could simply use all of the collected observations
to compute the posterior, this choice is invalid in the case that
non-ego agents switch to a different mode somewhere in the
middle of the collected observations. To solve this issue, we
can make the less restrictive assumption that only the last k
controls from non-ego agents correspond to the same mode.

V. GAME THEORETIC MODEL PREDICTIVE CONTROL

In this section, we summarize the MMELQGames algorithm
which combines the solution to the information asymmetric
game setup described in Section IV-A with the latent mode
Bayesian inference in Section IV-B and propose a receding
horizon game-theoretic planner that can reason about and infer
multiple hypothesis in Algorithm 1, Algorithm 2, Algorithm 3
and summarized in Fig. 4. Algorithm 1 can be summarized as
first solving for a set of local Nash equilibrium in Algorithm 2,
then using the solutions as inputs to solve a POMDP for the
ego agent with uncertainty over the mode in Algorithm 3.

Algorithm 2 starts by first finding a set of modes that each
solve the local maximum entropy generalized Nash equilibrium
problem (8). Moreover, to obtain the optimal policies for the
non-ego agents from previous timesteps, we solve starting
from the earliest timestep which we wish to condition our
posterior computation (49) on, warm-starting this computation
from the previous iteration’s solution if available. To solve
for each mode, we use the MELQGames algorithm. More
specifically, we first compute the nominal state trajectories
{x̄a}Aa=1 as well as derivatives of the cost functions li and
dynamics f along (x̄a, ūa) for each mode. Then, we solve for
the backward pass by computing the optimal policy (20) and
updating the value function (24) for each timestep starting from
the terminal time T . Finally, we update the nominal controls



Initial state

Optimal controls

MELQGames ... Cluster modes 
(k-means)

Bayesian
inference       

Clustered modes
Mode

probabilities

Solve POMDP 
for ego agent

Previous controls of all agents

x0

A in parallel
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Fig. 4: Schematic diagram of the proposed MPC MMELQGames algorithm presented in (1) and (3).

Algorithm 2 Find Modes

Require: Number of modes A, Number of iterations K,
control estimates {ūa}Aa=1, Penalty parameter ρ, Feasibility
progress τ > 0, Penalty increase γ > 0, Thresholds ϵ > 0

1: Initialize λi
j = 0,Va

0 =∞, ρa = 1
2: Compute nominal mean trajectory {X̄a} using {Ūa}.
3: for k = 1 to K do
4: for a = 1 to A in parallel do
5: πi,a∗, V i,a

x , V i,a
xx ← Backward pass (20), (25)–(28)

6: end for
7: for a = 1 to A in parallel do
8: (X̄a, Ūa)← Line Search on maxi∥J i

ui∥
9: end for

10: Compute Vi
k using (34)

11: if maxi∥J i
ui∥ ≤ ϵ then ▷ Unconstrained Converged

12: if Va
k ≤ ϵ then ▷ Constraints Converged

13: Save (X̄a, Ūa, πu,a∗, V i,a
x , V i,a

xx ) and reinitialize
mode a by sampling from π.

14: end if
15: if Va

k > τVa
k−1 then ▷ Insufficient Decrease

16: ρa ← γρa

17: end if
18: end if
19: end for
20: {Ūa}Ãa=1 ← Cluster {Ūa}

Algorithm 3 Solve Ego Agent POMDP

Require: Observed controls from past k timesteps u¬1
−k:−1,

Value functions V i,a, Optimal Policies {π¬1,a}Ãa=1 for
non-ego agents

1: p(a)← Compute prior with (47) or (48)
2: b0 ← Compute initial belief with (49)
3: π1 ← Solve full (42) or approximate (44) POMDP

using a line search on the maximum of the norm maxi∥J i
ui∥.

We exploit the fact that each local Nash equilibrium can be
computed independent by solving for A local generalized Nash
equilibrium in parallel, where A is chosen to be the number
of cores available for parallel processing on the CPU. This
iteration of backward and forward pass continues for each
mode until this norm is smaller than some threshold ϵ, upon
which it is saved into a set of converged modes before being
reinitialized from the current π. After the maximum number

of iterations has been reached, we perform clustering via k-
means to remove potential duplicate modes before returning
the reduced set {(x̄a, ūa)Ãa=1} of unique Nash equilibrium.

Then, in Algorithm 3, we use the ego agent’s value function,
optimal policies for the non-ego agents π¬i,a and observed
controls from non-ego agents to perform Bayesian inference
on the mode a to compute our belief prior b0 via (49).
Consequently, we use b0 and π¬i,a to solve the POMDP (42)
and obtain the optimal policy π1,∗. This can be done by either
solving the full POMDP (42) using the method from [24] or
by solving the approximated one-step POMDP (44).

Finally, we either execute a random sample from π1,∗ or
use the mean control before repeating the algorithm again in a
receding horizon fashion.

VI. CONNECTIONS TO RELATED WORKS

A. Game-Theoretic Planning

There are two main approaches to solving for game-theoretic
equilibria: Iterative Best Response (IBR)-based and direct
methods.

IBR-based methods: IBR-based methods rely on either
the Jacobi decomposition or Gauss-Seidel decomposition to
decompose the problem of finding first-order stationary points
into separate optimal control problems for each agent [3, 36].
These methods optimize the controls for one agent while
keeping the controls for other agents fixed, repeating this
process iteratively until convergence. By holding controls, IBR
assumes that ∂u¬i

t+1

∂ui
t

=
∂u¬i

t+1

∂xt+1

∂xt+1

∂ui
t

= 0. As a result, IBR lacks
the term below key to describing inter-agent behavior arising
from asymmetric inter-agent coupling terms:

∂J i

∂ui
t

=
∂J i

∂xt+2
·
(
∂xt+2

∂u¬i
t+1

∂u¬i
t+1

∂xt

∂xt

∂ui
t

+ . . .

)
. (50)

To remedy this, approaches from [31, 32, 33] propose the
SE-IBR algorithm which extends IBR by accounting for some
of missing information using the sensitivity nformation from
the Lagrange multipliers of active constraints. However, their
approach relies on a particular structure of the cost function.
Additionally, the convergence of IBR-based methods is not well
understood [10] and can potentially require many trajectory
optimization iterations before convergence.

Direct methods: Direct methods solve for the coupled
system of equations resulting from the first-order stationary
conditions directly. Examples include methods based on
Newton’s method [7, 8, 4] and DDP [12, 28]. The proposed



MMELQGames algorithm falls under the category of DDP-
based methods as it solves a quadratic approximation of
the dynamic game during each timestep. However, unlike
previous methods, our method focuses on the constrained
MaxEnt version of the game and also incoporates multimodality
via a novel formulation of an incomplete information with
information asymmetry.

B. Multimodal Planning

There are relatively few works that explore the concept
of multimodality within the context of dynamic games. This
idea is explored in [16], but requires the multimodality to be
known a priori and explicitly encoded into the model. One
series of works [13, 14, 27] approach this problem by training
a generative model offline conditioned on a discrete latent
variable to learn the trajectories of other agents. While this
approach does take multimodality into account, it is not done
in a game-theoretic context.

The work in this paper is most similar to [24], which also
solves a POMDP with a discrete latent variable. However, in
their work, the discrete latent variable must be prespecified
while the multimodality is discovered in this work. Also, their
work only looks at optimality for a single agent while in our
work we focus on solving for generalized Nash equilibria, with
the POMDP being only one piece of the algorithm.

C. Bayesian Inference and Laplace Approximation

The maximum entropy term transforms the difficulty of
each agent’s optimization problem into that of sampling from
the optimal πi and computing the normalization term Zi, a
challenge shared by many techniques for Bayesian inference.
Some popular techniques for tackling Bayesian inference
include Markov chain Monte Carlo (MCMC) and Variational
Inference (VI) [1, 26], though these methods are usually much
slower and are computationally intractable for planning on real
time. We do note however a series of works [22, 35] which
successfully apply variational inference via sampling-based
optimization. Laplace Approximation [5] is an approximation
framework for Bayesian inference by finding a Gaussian
approximation to a probability density function MELQGames
can be viewed as applying the Laplace Approximation to πi

t

at each timestep t.

VII. EXPERIMENTS

In this section, we compare the proposed MMELQGames
algorithm against the IBR and MELQGames algorithms on two
examples which illustrate the capabilities of MMELQGames in
recovering a rich set of multi-agent interactions. The reader is
encouraged to view the videos included in the supplementary
material which showcase the behavior of MMELQGames
compared to MELQGames and IBR.

A. Multi-agent collision avoidance

We begin with a simple collision avoidance game between
agents with unicycle dynamics to highlight the multimodality
of our algorithm. Each agent’s objective function composes
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Fig. 5: Comparison of realizations of the stochastic policy
obtained from MELQGames (left) and MMELQGames (right).
For MMELQGames, the mode a is sampled using the prior
from (47).
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Fig. 6: MMELQGames for the three agents case, where the
algorithm is able to find both Nash equilibria. The left plot
shows the planned mean policies for each mode. The square
denotes the initial position for each agent, with lines indicating
that positions are from the same timestep. The right plot shows
realizations of the stochastic policy. Again, the prior from (47)
is used for sampling the mode a.

of a quadratic task and a soft cost for colliding with other
agents. As there is no ego agent in this example, we assume
that the ego agent knows the mode a from the start and choose
the prior for a to be of the form (47). The results are shown
in Fig. 5. While Mehr et al. [20] claims that the stochastic
policy from MELQGames is able to result in multimodal
behaviors, our results show that this is not the case. Since
the mean control from MELQGames is equivalent to the linear
feedback controller from iLQR, the resulting behavior should
also result in a “tube” around the mean trajectory, which is
indeed what we see on the top row of Fig. 5. On the other
hand, the MMELQGames algorithm is able to properly handle
the multimodality of this example and sucessfully find both
local Nash equilibria of the game.

B. Game Theoretic Autonomous Racing

We next consider a two-agent racing scenario where the lead
vehicle has index i = 1 and the rear vehicle has index i = 2.
The objective of each agent is to maximize the difference
between its own progress si and the progress of the other
agent s¬i (first term) under quadratic control cost (second
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iLQGames

MMELQGames

Fig. 7: Comparison of the trajectories resulting from running
IBR (top), iLQGames (middle) and MMELQGames (bottom)
in MPC for the lead (blue) agent. IBR is used for the rear
(green) agent in all cases. We test on the case where the rear
agent tries to overtake above (left) and below (right) the lead
agent. Colored circles are added every fifth timestep to indicate
the position of each agent. Black circles indicating the radius
of each agent denote the timestep where the agents are closest
to each other.

(a) iLQGames (b) MMELQGames

Fig. 8: Snapshot of iLQGames (left) and MMELQGames
(right) at three timesteps after the rear agent starts turning
towards the bottom mode. The ego agent’s planned trajectory
is shown as a solid blue line, with the predicted trajectories
of the non-ego agent shown as a dashed line. iLQGames
incorrectly predicts that the rear agent will overtake from
the top due to the algorithm being stuck in a local minima,
while MMELQGames is able to successfully infer that the
mode has changed. For MMELQGames, the different colors
indicate the different modes.

term), subject to the following

min
ui

(s¬i − si) +

T−1∑
t=1

1

2
ui
t

T
Rui

t, (51)

s.t. hi
track(X,U) ≤ 0, (52)

1si<s¬ihi
collision(X) ≤ 0, (53)

hi
velocity(X) ≤ 0. (54)

where each vehicle is modeled as a unicycle with linear and
angular accelerations as controls.

To make the problem interesting, the lead vehicle has a
lower maximum velocity than the rear vehicle to allow the
rear vehicle the opportunity to overtake. To maintain the lead,
the lead vehicle must block the rear vehicle from overtaking
its position. Furthermore, to more closely model racing in real
life, the collision constraint is asymmetric with the burden of
respecting the constraint placed solely on the rear vehicle.
We compare a MPC version of the IBR, iLQGames and
MMELQGames algorithms for the lead vehicle by planning in a
receding horizon fashion. Note that MELQGames is equivalent
to iLQGames if the mean controls are used instead of sampling
from the stochastic policy. In all cases, the rear agent solves
for its controls using IBR. The width of the track means that
the rear agent can choose to overtake the lead vehicle by going
either above or below resulting in multimodality. We test both
modes in our experiments, with the results for MMELQGames
shown in Fig. 1 and a comparison of the algorithms shown in
Fig. 7.

As expected, IBR is unable to take into account the
asymmetric coupling effects between the agents. Although
the solution it does find is a local GNE, it is one which is
disadvantageous for the lead agent and results in the lead agent
being overtaken by the rear agent in both modes. iLQGames
is able to converge to the advantageous local GNE for the
first mode and successfully finish the race ahead of the rear
agent. However, the nature of the method means that it is only
able to keep track of one of the two modes, resulting in the
method failing to block the rear agent when the rear agent
overtakes via the bottom. Finally, the multimodal nature of
MMELQGames means that it is able to keep track of both
local Nash equilibria at the same time. By using the history of
the rear agent’s control, the lead agent is able to infer whether
rear agent is trying to overtake from the top or the bottom and
then execute the corresponding control.

We also note that since MELQGames is a local method,
it is prone to becoming stuck in local minima. From Fig. 8,
even though the rear agent is clearly trying to overtake via the
bottom mode, the warmstart for iLQGames means that it still
predicts the rear agent will overtake from the top. On the other
hand, the multimodality of MMELQGames means that it can
keep track of multiple hypothesis at the same time and hence
is able to infer the correct mode using the algorithm described
in Section IV-B and respond accordingly.

VIII. CONCLUSION

In this paper, we have proposed a constrained MaxEnt
dynamic game formulation and presented an algorithm that
can solve for multiple modes of the corresponding GNE. We
demonstrate its advantages over existing unimodal algorithms
in the examples of multi-agent collision avoidance and au-
tonomous racing.

While we have explored the use of constraints on the mean
control in our formulation, it may be interesting to look at
different ways of including constraints in the MaxEnt dynamic



game formulation such as via chance constraints or constraints
that hold almost-surely.

Finally, though our algorithm identifies multimodal behavior
by exploring the state space, we do not provide any guarantees
for how thorough this exploration is or whether there are
additional modes which have not been discovered. Quantifying
this via uncertainty quantification tools such as Gaussian
Processes can provide more structured methods of discovering
different modalities in multi-agent interactions.
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APPENDIX A
EXPRESSION FOR PARTIAL DERIVATIVES OF Qi

Let Qi denote the terms inside the expectation in Bellman’s equation (11):

Qi(x,u) := li(x,u) + V i′(f(x,u)). (A.1)

Suppose that the value function at the next timestep V i′ is quadratic with form

V i′(x) = (V̄ i)′ + (V i)′xδx+
1

2
δxT(V i)′xxδx (A.2)

Using a quadratic approximation of the costs and linear approximation of the dynamics (15) then yields

Qi(x,u) ≈ li(x̄, ū) +

[
lix
liu

]T [
δx
δu

]
+

1

2

[
δx
δu

]T [
lixx lixu
liux liuu

] [
δx
δu

]
(A.3)

+
(
f(x̄, ū) + fxδx+ fuδu

)T(
(V̄ i)′ + (V i)′xδx+

1

2
δxT(V i)′xxδx

)(
f(x̄, ū) + fxδx+ fuδu

)
. (A.4)

Expanding and collecting terms then results in

Qi(x,u) ≈ V̄ i + δQi,

V̄ i := li(x̄, ū) + (V̄ i)′(f(x,u)),
(A.5)

δQi :=

[
Qi

x

Qi
u

]T [
δx
δu

]
+

1

2

[
δx
δu

]T [
Qi

xx Qi
xu

Qi
ux Qi

uu

] [
δx
δu

]
. (A.6)

where the partial derivatives of Qi are as follows:

Qi
x = lix + fT

x (V i)′x (A.7)

Qi
u = liu + fT

u (V i)′x (A.8)

Qi
xx = lixx + fT

x (V i)′xxfx (A.9)

Qi
ux = liux + fT

u (V i)′xxfx (A.10)

Qi
uu = liuu + fT

u (V i)′xxfu (A.11)
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PROOF OF LEMMA 1

We restate the theorem below for convenience.

Lemma 1 (Optimal MELQGames Policy). The optimal policy πi∗ which solves (19) for each agent i has the form

πi∗ = Zi−1
exp

(
− α

2
(δui − δui∗)TQi

uiui(δui − δui∗)
)

(B.1)

where δu∗ is the solution to the following system of equations

0 = Q̂uuδu
∗ +Quxδx+Qu = k +Kδx (B.2)

and the matrix Q̂uu ∈ Rnu×nu is obtained by vertically stacking the row vectors Qi
uiu for each i ∈ {1, . . . , N}:

Q̂uu :=

Q1
u1u
...

QN
uNu

 (B.3)

Proof: The optimal policy for agent i in (19) is the Gibbs distribution

πi∗(δui) ∝ exp

(
− 1

α

[(
Qi

ui +Qi
uixδx+Qi

uiu¬iE
[
δu¬i

])T

δui +
1

2
δuiTQi

uiuiδui

])
. (B.4)

Since the expression inside the exponential function is quadratic in δui with the negative definite quadratic term − 1
2αQ

i
uiui ,

the optimal policy πi∗ is multivariate Gaussian with covariance matrix Σ = α(Qi
uiui)−1. To find the mean of πi∗, we complete

the square to obtain(
Qi

ui +Qi
uixδx+Qi

uiu¬iE
[
δu¬i

])T

δui +
1

2
δuiTQi

uiui =
1

2
(δui − δui∗)TQi

uiui(δui − δui∗)− 1

2
δui∗TQi

uiuiδui∗ (B.5)

where the mean δui∗ = E
[
δui

]
is defined as

δui∗ := −(Qi
uiui)−1(Qi

ui +Qi
uixδx+Qi

uiu¬iδu¬i∗) (B.6)

where we have used δu¬i∗ := E
[
δu¬i

]
to denote the mean control of the other agents. If δu¬i∗ were known (ex. in the IBR

case where δu¬i∗ is held fixed), then δui∗ can be solved from (B.6) alone. However, in this case, δu¬i∗ is not known. However,
by rearranging (B.6) we obtain

0 = Qi
uiuiδui∗ +Qi

ui +Qi
uixδx+Qi

uiu¬iδu¬i∗ (B.7)

= Qi
ui +Qi

uixδx+Qi
uiuδu

∗, (B.8)

which provides nui equations in the unknown variable δu∗ ∈ Rnu . Hence, by considering (B.8) for all agents, we obtain the
following linear equation for δu∗:

Q̂uuδu
∗ +Quxδx+Qu = 0 (B.9)

with Q̂uu defined as the stacked matrix of Quiu for all agents:

Q̂uu :=

Q1
u1u
...

QN
uNu

 (B.10)
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To simplify the proof, we first begin with the following technical lemma.

Lemma 5. Suppose that δu∗ satisfies (21). Then,(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗ − 1

2
δui∗TQi

uiuiδui∗ =
(
Qi

u +Qi
uxδx

)T

δu∗ +
1

2
δu∗TQi

uuδu
∗

(C.1)

Proof: Since δu satisfies (21), it must thus satisfy (B.7). Hence,

−Qi
uiuiδui = Qi

ui +Qi
uixδx+Qi

uiu¬iδu¬i∗ (C.2)

Splitting − 1
2 into 1

2 − 1, using the above identity then simplifying:(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗ − 1

2
δui∗TQi

uiuiδui∗ (C.3)

=
(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗ +
1

2
δui∗TQi

uiuiδui∗ − δui∗TQi
uiuiδui (C.4)

=
(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗ +
1

2
δui∗TQi

uiuiδui∗ + δui∗T(Qi
ui +Qi

uixδx+Qi
uiu¬iδu¬i∗)

(C.5)

=
(
Qi

u +Qi
uxδx

)T

δu∗ +
1

2
δu∗TQi

uuδu
∗ (C.6)

We now restate Lemma 2 below for convenience.

Lemma 2 (MELQGames Value Function Update). Suppose the infimum in the Bellman equation (11) is solved with policy πi∗

with mean δu∗ = k +Kδx according to Lemma 1. Then, the value function using δũ for agent i has the form

V i(x) = Eδu∼π̃

[
li(x,u) + V i′(f(x,u)

]
− αH[π̃i] (C.7)

=
(
V i + V i

H

)
+ V i

x

T
δx+

1

2
δxTV i

xxδx, (C.8)

where the terms V i, V i
H , V i

x and V i
xx have the form

V i = V̄ i +Qi
uk +

1

2
kTQi

uuk (C.9)

V i
H =

α

2

(
log|Qi

uiui | − nu log(2πα)
)

+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] (C.10)

V i
x = Qi

x +KTQi
uuk +KTQi

u +Qi
xuk (C.11)

V i
xx = Qi

xx +KTQi
uuK+KTQi

ux +Qi
xuK (C.12)

Proof: Let Ii denote the following integral.

Ii :=
∫

exp

(
− 1

α

[
Qi

ui +Qi
uixδx+Qi

uiu¬iE
[
δu¬i

])T

δui +
1

2
δuiTQi

uiuiδui

])
dδui (C.13)

Then, completing the square as in (B.5) and simplifying, we obtain

Ii = exp

(
− 1

α

[
−1

2
δui∗TQi

uiuiδui∗
])∫

exp

(
− 1

α

[
1

2
(δui − δui∗)TQi

uiui(δui − δui∗)

])
dδui (C.14)

= exp

(
− 1

α

[
−1

2
δui∗TQi

uiuiδui∗
])(

2π
)nu

2
(∣∣α(Qi

uiui)−1)
∣∣) 1

2

(C.15)

= exp

(
− 1

α

[
−1

2
δui∗TQi

uiuiδui∗
]) (

2πα
)nu

2

∣∣Qi
uiui

∣∣ 1
2

(C.16)

= exp

(
− 1

α

[
−1

2
δui∗TQi

uiuiδui∗ +
α

2

(
ln|Qi

uiui | − nui ln(2πα)
)])

(C.17)



Then, the partition function Zi (13) takes the form

Zi =

∫
exp

(
− 1

α
Eu¬i

[
V i′(f(x,u)) + li(x,u)

])
dui (C.18)

= exp

(
− 1

α

[
V̄ i +Qi

x

T
δx+

1

2
δxTQi

xxδx+
(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗

+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] ])
∫

exp
(
− 1

α

[(
Qi

ui +Qi
uixδx+Qi

uiu¬iE
[
δu¬i

])T

δui +
1

2
δuiTQi

uiuiδui

])
dδui

(C.19)

= exp

(
− 1

α

[
V̄ i +Qi

x

T
δx+

1

2
δxTQi

xxδx+
(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗

+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] ])
I

(C.20)

= exp

(
− 1

α
V i(x)

)
(C.21)

where the trace term comes from taking the expectation of the quadratic term in δu¬i and

V i(x) = (V̄ i)′ +Qi
x

T
δx+

1

2
δxTQi

xxδx+
(
Qi

u¬i +Qi
u¬ixδx

)T

δu¬i∗ +
1

2
δu¬i∗TQi

u¬iu¬iδu¬i∗

− 1

2
δui∗TQi

uiuiδui∗ +
α

2

(
ln|Qi

uiui | − nui ln(2πα)
)
+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] (C.22)

Applying Lemma 5, using the definition of δu∗ and collecting terms then yields

V i(x) = (V̄ i)′ +Qi
x

T
δx+

1

2
δxTQi

xxδx+
(
Qi

u +Qi
uxδx

)T

δu∗

+
1

2
δu∗TQi

uuδu
∗ +

α

2

(
ln|Qi

uiui | − nui ln(2πα)
)
+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] (C.23)

=
(
V i + V i

H

)
+ V i

x

T
δx+

1

2
δxTV i

xxδx (C.24)

where

V i = V̄ i +Qi
uk +

1

2
kTQi

uuk (C.25)

V i
H =

α

2

(
log|Qi

uiui | − nu log(2πα)
)

+ α

N∑
j=1,j ̸=i

tr
[
(Qj

uj ,uj )
−1Qi

uj ,uj

] (C.26)

V i
x = Qi

x +KTQi
uuk +KTQi

u +Qi
xuk (C.27)

V i
xx = Qi

xx +KTQi
uuK+KTQi

ux +Qi
xuK (C.28)
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We restate Lemma 3 below for convenience.

Lemma 3. Suppose that the augmented Lagrangian MELQGames converges to a tuple (π∗, λi
j , ρ) for some ρ > 0 which

satisfies dual feasibility of λ, LICQ and SOSC. Then, π∗ is a GNE for (5).

Proof: Since the solution satisfies LICQ, SOSC and λ > 0, each πi∗ is a local minima for its corresponding constrained
optimal control problem (5). Thus, there does not exist any feasible control π ∈ Π(π¬i∗) within a neighborhood of πi∗ that
can achieve a lower cost. Hence, π∗ satisfies (9) and is a GNE.
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Before proving Lemma 4, we first introduce the following theorem from Maschler et al. [18] which presents a sufficient
condition for an event A to be common belief among the players at a particular state of the world ω:

Theorem 1. Let N denote the number of agents in the game, ω ∈ Y be a state of the world and A ⊆ Y be an event satisfying
the following two conditions:

pi(A|ω) = 1, ∀i ∈ {1, . . . , N} (E.1)
pi(A|ω′) = 1, ∀i ∈ {1, . . . , N}, ∀ω′ ∈ A (E.2)

Then, A is common belief among the agents at ω.

Using Theorem 1, we can now prove (4), which we restate below for convenience.

Lemma 4. Let E = {ωa,s}Aa=1 denote the event that the ego agent knows the correct mode with probability 1. Then, for all
i ̸= 1, ω ∈ BiE, i.e. all non-ego agents believe that the ego agent knows the mode perfectly. Furthermore, it is common belief
that BiEa for all i ̸= 1. In particular, the ego agent (correctly) believes that all non-ego agents (incorrectly) believes that it
knows the correct mode.

Proof: First, note that at ω ∈ E, all agents, including the ego agent, know the true mode. Using the definition of the belief
operator Bi (38), we have that for i ̸= 1:

BiE = {ω ∈ Y |pi(E|ω) = 1} = Y. (E.3)

In other words, non-ego agent i believes that E will attains no matter what the true world state ω∗ is. Since pi(Y |ω) = 1 for
any ω ∈ Y , BiE = Y is thus common belief among the agents at all world states. Hence, by the definition of common belief,
we have that

B1BiE = B1Y = Y (E.4)

i.e., the ego agent believes that the non-ego agents believe it knows the true mode. On the other hand, we have that

B1E = {ω ∈ Y |p1(E|ω) = 1} = E, (E.5)

B1E
∁ = {ω ∈ Y |p1(E∁|ω) = 1} = E∁. (E.6)

where E∁ denotes the complement of E in Y . In other words, when ω ∈ E∁, the ego agent (correctly) believes that it does not
know the true mode while simultaneously knowing that the non-ego agents (incorrectly) believe that it knows the true mode.
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