
Decentralized Safe Multi-agent Stochastic Optimal
Control using Deep FBSDEs and ADMM

Marcus A. Pereira, Augustinos D. Saravanos, Oswin So, and Evangelos A. Theodorou
Autonomous Control and Decision Systems Lab

Georgia Institute of Technology, Atlanta, Georgia
{mpereira30, asaravanos3, oswinso, evangelos.theodorou}@gatech.edu

Abstract—In this work, we propose a novel safe and scalable
decentralized solution for multi-agent control in the presence
of stochastic disturbances. Safety is mathematically encoded
using stochastic control barrier functions and safe controls are
computed by solving quadratic programs. Decentralization is
achieved by augmenting to each agent’s optimization variables,
copy variables, for its neighboring agents. This allows us to
decouple the centralized multi-agent optimization problem. How-
ever, to ensure safety, neighboring agents must agree on what
is safe for both of us and this creates a need for consensus.
To enable safe consensus solutions, we incorporate an ADMM-
based approach. Specifically, we propose a Merged CADMM-
OSQP implicit neural network layer, that solves a mini-batch
of both, local quadratic programs as well as the overall con-
sensus problem, as a single optimization problem. This layer
is embedded within a Deep FBSDEs network architecture at
every time step, to facilitate end-to-end differentiable, safe and
decentralized stochastic optimal control. The efficacy of the
proposed approach is demonstrated on several challenging multi-
robot tasks in simulation. By imposing requirements on safety
specified by collision avoidance constraints, the safe operation of
all agents is ensured during the entire training process. We also
demonstrate superior scalability in terms of computational and
memory savings as compared to a centralized approach.

I. INTRODUCTION

A vast variety of robotics applications such as coverage
control [15], flocking of UAVs [32], multi-robot navigation [2],
etc., falls into the class of multi-agent control problems. Such
settings usually include a team of autonomous agents which
are required to cooperate in order to accomplish a common
goal. Effective frameworks for addressing these problems
should be able to control the agents in an optimal manner,
while ensuring their safety under uncertainty. In addition, it
is of paramount importance that such methods are scalable
to large-scale systems in terms of computational efficiency,
memory usage and communication requirements.

Deep reinforcement learning has enjoyed significant fame
over the past few years [30, 41, 42, 28], although being
restricted to simulation settings where safety is not a primary
concern. Therefore, very recently, the focus has shifted to the
area of safe reinforcement learning [47, 12], where safety is
required during the entire training process.

Control Barrier Functions (CBFs) [3, 4], have been popu-
larly used in the robotics community to design controllers that

Under Review.

guarantee invariance of user-defined safe sets. These are gener-
ally combined with off-the-shelf Quadratic Programming (QP)
solvers to deliver real-time safe control solutions. However,
most work has focused primarily on deterministic systems.
Very recent works employing, so called, Stochastic CBFs
(SCBFs) [14, 37, 39, 51] aim to bridge the gap, but lack
scalability to large scale systems.

The confluence of Deep Learning and traditional opti-
mization methods for intra-layer optimization has been of
special interest lately. In particular, recent works embed QPs
[1, 5, 7], root-finding methods [8] and even non-convex solvers
[6, 20, 21] into the forward-pass of deep neural network layers
and are popularly referred to as implicit neural network layers
(other examples are [10, 27]). In most of these methods, the
backward-pass is efficiently computed by invoking the implicit
function theorem rather backpropagating through the unrolled
graph of the forward-pass.

A general approach for continuous-time Stochastic Opti-
mal Control (SOC) relying on FBSDEs (Forward-Backward
Stochastic Differential Equations) was recently combined with
deep learning [23] to solve high-dimensional Hamilton-Jacobi-
Bellman PDEs (HJB-PDEs). Most noteworthy being deep
FBSDEs [33, 34, 48, 11], a scalable framework for SOC
problems that, at its core, leverages the function approximation
capabilities of deep recurrent neural networks (specifically
LSTMs) to learn the gradient of the value-function, which can
then be used to compute optimal control policies.

Distributed optimization-based frameworks have been gain-
ing significant attention for tackling multi-agent control prob-
lems. A suitable method for deriving such algorithms is the
Alternating Direction Method of Multipliers (ADMM) [9].
In particular, ADMM-based methods have been recently pro-
posed [45, 49, 22, 13], yielding elegant decentralized solutions
for multi-agent control. Furthermore, recent works employing
ADMM in a stochastic setting, [38, 36, 26], have shown to be
capable of successfully encompassing both the safety under
uncertainty and scalability desired attributes.

There has been very little work trying to put together all
these ingredients into one framework. The Safe Deep FBSDEs
framework [35] is one recent approach that partly addresses
this need, the missing component being decentralization. More
specifically, it uses an instantiation of implicit layers to solve
embedded SCBF-based QPs combined with deep learning.
Additionally, it utilized a conservative SCBF that tries to

gaurantee safety with a probability of 1. The method was tested
on low-dimensional systems in simulation and the resulting
policies were too conservative. Inspired by Safe Deep FBSDEs
with the aim to overcome its limitations in order to scale to
large multi-agent SOC problems, we propose a decentralized
approach to safety. To this end, the specific contributions of
our work are,

1) A safe end-to-end differentiable framework that uses a
novel SCBF formulation that is practically more mean-
ingful and allows for safe, yet non-conservative policies,

2) A fully decentralized ADMM based algorithm for large
scale QPs embedded into an implicit neural network
layer with drastic improvements in memory efficiency
and training time as compared to a centralized approach,

3) A safe reinforcement framework, i.e., one that ensures
safety not only at test time, but also while training the
policy, and,

4) Extensive testing on several multi-robot challenging
tasks in simulation, demonstrating the capabilities of the
proposed framework.

II. NOTATION

Here, we introduce the notation followed throughout this
paper. Non-bold symbols are used for scalars a ∈ R, and
bold lowercase and uppercase symbols for vectors a ∈
Rn and matrices A ∈ Rn×m, respectively. With a =
[a1; . . . ;aN], we denote the vertical concatenation of vectors
a1, . . . ,aN . The ℓ2-norm of a vector a ∈ Rn is defined
as ∥a∥2 =

√∑n
i=1 a

2
i where a = [a1; . . . ; aN]. Moreover,

the trace of a matrix A ∈ Rn×n is denoted with tr(A).
We also define as diag(a1, . . . , aN) ∈ RN×N the diagonal
matrix with diagonal elements scalars a1, . . . , aN , and as
bdiag(A1, . . . ,AN) the block diagonal matrix constructed by
the matrices A1, . . . ,AN . Given a set N , its cardinality is
denoted by |N |. With Ja, bK, we denote the integer interval
[a, b] ∩ Z. Finally, given a convex set C, ΠC(x) denotes the
projection of a vector x onto the set and Ic(x) denotes the
set indicator function such that Ic(x) = 0 if x ∈ C and
Ic(x) = +∞ otherwise.

III. PROBLEM FORMULATION

The framework developed in this paper can be applied to
various problems, however, we focus on a multi-robot setting
so as to establish a notion of distance as well as to provide
context for constraints commonly encountered in this setting.

Consider a collection of N agents. The stochastic, nonlinear
and control-affine dynamics for any agent i are given by,

dxi =
(
fi(xi) +Gi(xi)ui

)
dt+Σi(xi)dwi (1)

where xi = xi(t) ∈ Rni , ui = ui(t) ∈ Rmi , wi = wi(t) ∈
Rpi are the state, control and standard Brownian-motion
vectors, respectively, and fi(·) : Rni → Rni , Gi(·) : Rni →
Rni×mi and Σi(·) : Rni → Rni×pi denote the drift vector,
actuation matrix and diffusion matrix respectively. In order to
state the centralized problem, we construct the global state,
control and Brownian-motion vectors, x = [x1; x2; . . . ; xN],

u = [u1; u2; . . . ; uN], and w = [w1; w2; . . . ; wN] respec-
tively, by concatenation. Thus, the global stochastic dynamics
are given by,

dx =
(
f(x) +G(x)u

)
dt+Σ(x)dw (2)

with f = [f1; f2; . . . ; fN], G = bdiag(G1, . . . ,GN) and
Σ = bdiag(Σ1, . . . ,ΣN).

Stochastic Optimal Control (SOC) aims to minimize an
expected cost subject to (2) given by,

J (x, u, t0) =

N∑
i=1

Ji(xi, ui, t0)

=

N∑
i=1

E
[
ϕi

(
xi(T)

)
+

∫ T

t0

(
qi
(
xi

)
+

1

2
uT
i Riui

)
dt

]
(3)

where for any agent i, ϕi(·) is the terminal state-cost function
and the running cost comprises of a purely state-dependent
term, qi(·), and a quadratic control-cost term with weighting
coefficients given by the matrix Ri ∈ Rmi×mi .

To solve the SOC problem using dynamic programming, we
define the value function as, V (x, t) = infu J (x, u, t), i.e.,
the optimal cost-to-go from state x at time step t. Next, using
Ito’s formula [40, Chapter 4], one can derive the Hamilton-
Jacobi-Bellman Partial Differential Equation (HJB-PDE),

∂V

∂t
+ inf

u
H = 0, V (x, T) =

N∑
i=1

ϕi

(
xi(T)

)
(4)

where, H =
1

2
tr

(
∂2V

∂x2
ΣΣT

)
+
∂V

∂x

T(
f +Gu

)
+

N∑
i=1

(
qi +

1

2
uT
i Riui

)
which is a backward semilinear PDE and H is referred
to as the Hamiltonian. Owing to the construction of the
global state and control by concatenation, the Hamiltonian
minimization can be split into a sum of decoupled mini-
mizations of the Hamiltonians associated with each agent
i
(
i.e., infu H =

∑N
i=1 infui

Hi

)
in the absence of inter-agent

safety constraints. However, when the latter are considered,
this decoupling is no longer valid. In this work, we adopt a
probabilistic approach to safety by imposing such constraints
using Stochastic Control Barrier Functions (SCBFs). We as-
sume that a safe set defined by C = {x : h(x) ≥ 0}
is known, where h(x) is task-dependent and usually hand-
designed and the goal is to stay within the safe set (with a
high probability) for the entire time horizon. In the context
of multi-robot systems, these SCBFs can encode obstacle and
inter-agent collision avoidance constraints.

There are two types of SCBFs currently in literature –
almost-sure (type-I) and those which allow for violations
(type-II). The type-I SCBFs ensure that the system remains
inside the safe set with a probability of 1 [14] for all time
t ∈ [0, T]. These were successfully utilized within a recent
deep-learning based SOC framework [35], but simulation
results clearly indicate that type-I SCBFs lead to conservative

policies preventing agents from getting close to each other,
thus, reducing flexibility of the trained policy. This restriction
can prohibit application to systems with a large number of
agents. On the other hand, type-II SCBFs allow tuning the
probability of failure based on one’s risk appetite and therefore
have a higher practical appeal. These have been employed in
recent works [37, 51] and are based on derivation of Lyapunov
functions for finite time stability of stochastic systems [25,
Chapter 3]. Restating the result from [37, Proposition 1]
here for convenience of the reader: suppose there exists a
twice differentiable function B(x), that satisfies the following
inequalities,

B(x) ≥ 0 ∀x ∈ RNni (5)

B(x) ≥ 1 ∀x ∈ (RNni\C) (6)

∂B

∂x

T(
f +Gu

)
+

1

2
tr
(
∂2B

∂x2
ΣΣT

)
≤ −αB(x) + β, (7)

where (7) is satisfied ∀ t ∈ [0, T] and ∀x ∈ RNni for some
α ≥ 0 and β ≥ 0. Based on the chosen values of α and β, one
can compute bounds on the probability of failure. We refer the
reader to the supplementary material for additional details.

Inequalities (5) and (6) can be satisfied by choosing B(x) =
e−γh(x) so that when the system exits the safe set C, then
B(x) > 1 because h(x) < 0. To satisfy (7), we impose it as a
hard constraint on the Hamiltonian minimization in (4). Since
the objective H(u) is quadratic and the constraint (7) is linear
in u, then a safe optimal control can be obtained by solving the
resulting Quadratic Program (QP) at every time step. Similar
to the work in [35], we have the following HJB-PDE,

∂V

∂t
+ inf

u∈usafe

{
N∑
i=1

(
1

2
uT
i Riui +

∂V

∂xi

T

Giui

)}

+

N∑
i=1

(
qi +

∂V

∂xi

T

fi +
1

2
tr
(∂2V

∂x2
i

ΣiΣ
T
i

))
= 0

(8)

where, usafe =

{
u

∣∣∣∣∣∂Bk

∂x̄k

T(
f̄k + Ḡkūk

)

+
1

2
tr

(
∂2Bk

∂x̄2
k

Σ̄kΣ̄
T
k

)
≤ −αBk(x̄k) + β, ∀ k ∈ J1, NineqK

}
where each Bk is either a pairwise safety constraint between
2 agents or between an agent and an obstacle, (x̄k and ūk)
are vectors obtained by concatenating states and controls of
the 2 agents corresponding to Bk for inter-agent constraints
or just the state and the control vectors of the ego agent for
agent-obstacle constraints, (f̄k, Ḡk and Σ̄k) are constructed
similarly and Nineq =

(
N
2

)
+NNo, is the total number of

inequality constraints. The
(
N
2

)
constraints account for all

possible agent pairs for collision avoidance similar to work
in [35, Section 4.3.2] and No is the number of obstacles.
However, this clearly would not scale for large values of N.
Due to these constraints, the minimization of individual Hi

can no longer be decoupled. Thus, the safe optimal control
U∗, has to be solved in a centralized manner as one large QP.

IV. CENTRALIZED SOLUTION USING DEEP FBSDES

Before we propose our decentralized solution to address
scalability, we summarize the deep learning based solution to
safe SOC problems adapted from recent work [35].

The unique solution of (8) is linked to that of a system of
FBSDEs via the Nonlinear Feynman-Kac lemma (see supple-
mentary material for derivation). Assuming that a solution u∗

exists, the FBSDE system that solves (8) is given by,

(FSDE) dx = (f +Gu∗)dt+Σdw, x(0) = x0 (9)

(BSDE)

dV = −
[∑N

i=1

(
qi +

1
2u

∗
i
TRiu

∗
i

)]
dt+ ∂V

∂x

T
Σdw

V
(
x(T)

)
=

∑N
i=1 ϕi

(
xi(T)

)
(10)

where, u∗ = argmin
u∈usafe

H.

Deep FBSDEs use deep networks to learn ∂V
∂x (x, t; θ), which

can be used to compute optimal control policies u∗(x).
Traditional methods [16, 19, 18, 17] to solve FBSDEs re-
lied on back-propagating and approximating the conditional
expectation of the value function, E

[
V (x, t)

]
, using least

squares. This approach is prone to numerical ill-conditioning
issues depending on which area of the state-space the system
visits, requires hand-picking basis functions and suffers from
compounding least squares errors over time as E

[
V (x, t)

]
is back-propagated from t = T to t = t0. Deep FBSDEs
circumvent the need to back-propagate E

[
V (x, t)

]
by instead

parameterizing V̂
(
x(0), 0

)
with trainable weights. Using this

approximation of the initial condition, V (x, t) can then be
forward propagated similar to a forward SDE using (10). At
the end of the time horizon, the predicted terminal value
V̂
(
x(T), T

)
that relies on the predictions of ∂V

∂x (x, t; θ)
provided by a deep LSTM network, is compared to the
true terminal value V

(
x(T), T

)
to construct a loss function.

V
(
x(T), T

)
is evaluated using the given ϕi

(
xi(T)

)
and

terminal states x(T) obtained by forward propagation of (9).
This is then used to train the deep LSTM network using
optimizers such as Adam [24]. Thus, deep FBSDEs is a
self-supervised learning framework. Over iterations, as the
loss is minimized, the network improves its predictions of
V̂
(
x(0), 0

)
and ∂V

∂x (x, t; θ).
For unconstrained problems, u∗

i = −R−1
i GT

i
∂V
∂xi

. However,
when combined with SCBFs, u∗

i can only be computed
numerically. Similar to work in [35], safe optimal controls u∗

i

can be computed in an end-to-end differentiable manner using
an OptNet-like [5] implicit layer to solve the constrained QP
(8) and to ensure efficient backpropagation for DNN training
using the implicit function theorem.

V. DECENTRALIZED APPROACH

In this section, we propose a decentralized approach for
addressing the Hamiltonian minimization in (8). To achieve
this, we reformulate the centralized problem in a distributed
form. Subsequently, we propose a decentralized ADMM-based
method combining elements from Consensus ADMM [9]

and OSQP [43] for solving large-scale QPs, which is then
employed for solving our problem.

A. Decentralized Problem

The key restriction in problem (8) which prevents directly
solving it in a distributed manner is the coupling induced
by the inter-agent constraints. To overcome this issue, let
us introduce the neighborhood sets Ni, i ∈ J1, NK, which
contain the neighboring agents of each agent i. We also define
the sets Pi = {j : i ∈ Nj}, i ∈ J1, NK, where each set Pi

contains all the agents that have agent i as a neighbor.

Assumption 1. Each agent i ∈ J1, NK is able to communicate
with all agents j ∈ Ni ∪ Pi, and vice versa.

Next, we consider for each agent i, the copy control
and state variables {u(i)

j }j∈Ni
and {x(i)

j }j∈Ni
, respectively.

Essentially, a copy variable u
(i)
j (or x

(i)
j) can be interpreted

as agent i deciding what is safe for its neighbor j from its own
perspective. Let us also define the augmented local variables
containing the states and controls of all agents within agent
i’s neighborhood:

ũi =
[
ui; {u(i)

j }j∈Ni

]
, x̃i =

[
xi; {x(i)

j }j∈Ni

]
, i ∈ J1, NK.

Nevertheless, the inclusion of the copy variables creates a
requirement for enforcing a consensus between variables that
correspond to the same agents. For this reason, we also
introduce the global control variable g = [g1, . . . ,gN] whose
components gi, i ∈ J1, NK should be equal to all local
variables that refer to agent i. Therefore, we impose the
constraints,

u
(i)
j = gj , ∀j ∈ Ni ∪ {i}, ∀i ∈ J1, NK. (11)

We can now formulate a decentralized form of the Hamil-
tonian minimization problem as,

min

N∑
i=1

Hi(ũi) (12a)

s.t.
∂Bi,k

∂x̃i,k

(
f̃i,k + G̃i,kũi,k

)
+

1

2
tr

(
∂2Bi,k

∂x̃2
i,k

Σ̃i,kΣ̃
T
i,k

)
≤ −αBi,k + β, ∀k ∈ J1, Nineq,iK, ∀i ∈ J1, NK (12b)
ũi = g̃i, ∀i ∈ J1, NK (12c)

where the vectors x̃i,k, ũi,k are defined as x̃i,k = [xi;x
(i)
j],

ũi,k = [ui;u
(i)
j], if (12b) is an inter-agent constraint involving

a specific neighboring agent j ∈ Ni and as x̃i,k = xi, ũi,k =
ui, if (12b) is an obstacle avoidance constraint. The functions
f̃i,k, G̃i,k, Σ̃i,k are defined accordingly in each case. Finally,
g̃i is defined as g̃i =

[
gi; {gj}j∈Ni

]
and Nineq,i = |Ni|+No.

Subsequently, by denoting the linear inequality constraints
(12b) as Aiũi ≤ di, we can rewrite problem (12) as,

min

N∑
i=1

Hi(ũi) + IAiũi≤di(Aiũi)

s.t. ũi = g̃i, ∀i ∈ J1, NK (13)

Problem (13) is now in a form where CADMM can be applied.
This yields a bilevel distributed optimization algorithm where
at every ADMM iteration, each agent first locally solves a QP,
and then the local solutions are used to perform the global and
dual updates [9, Chapter 7]. These local QPs can be solved by
well-known solvers such as OSQP [44], interior-point methods
[31, Chapter 16] [29, 5], etc.

B. Merged CADMM-OSQP Method

In this work, we exploit the fact that the inner QP program in
CADMM can itself be solved using ADMM via OSQP, flatten-
ing the bilevel optimization problem and propose the Merged
CADMM-OSQP method for solving QPs in a decentralized
manner. First, let us define R̃i = blkdiag(Ri, {0}j∈J1,|Ni|K)
and p̃i = [pi; {0}j∈J1,|Ni|K]. We then reformulate (13) as,

min

N∑
i=1

1

2
ũT
i R̃iũi + p̃T

i ũi + Iz̃i≤di
(z̃i)

s.t. Aiũi = z̃i, ũi = g̃i, ∀i ∈ J1, NK (14)

where each Hi(ũi) is written in a form Hi(ũi) =
1
2 ũ

T
i R̃iũi+

p̃T
i ũi. Next, we introduce the auxiliary variables ẑi, i ∈

J1, NK in a similar manner as in the OSQP derivation [44,
Section 3] and transform (14) to,

min

N∑
i=1

1

2
ũT
i R̃iũi + p̃T

i ũi + IAiũi=z̃i(ũi, z̃i) + Iz̃i≤di(ẑi)

s.t. z̃i = ẑi, ũi = g̃i, ∀i ∈ J1, NK (15)

The Augmented Lagrangian (AL) of (15) yields,

L =

N∑
i=1

1

2
ũT
i R̃iũi + p̃T

i ũi + IAiũi=z̃i
(ũi, z̃i) + Iz̃i≤di

(ẑi)

+
ρ

2

∥∥∥z̃i − ẑi +
yi

ρ

∥∥∥2
2
+

µ

2

∥∥∥ũi − g̃i +
ξi
µ

∥∥∥2
2

(16)

where yi, ξi are the dual variables for the corresponding
equality constraints and ρ, µ > 0 are penalty parameters.

Therefore, it is possible to use ADMM in a manner such
that the consensus and OSQP updates take place within the
same ADMM cycle of updates. The first block of updates on
ũi and z̃i will be,

{ũi, z̃i}l+1 =argmin
ũi,z̃i

1

2
ũT
i R̃iũi + p̃T

i ũi

+
ρ

2

∥∥∥z̃i − ẑli +
yl
i

ρ

∥∥∥2
2
+

µ

2

∥∥∥ũi − g̃l
i +

ξli
µ

∥∥∥2
2

s.t. Aiũi = z̃i. (17)

The second block where ẑi and g are updated will consist of,

ẑl+1
i = ΠCi(z̃

l+1
i +

1

ρ
yl
i) (18a)

gl+1
i =

1

|Pi|+ 1

∑
j∈Pi∪{i}

(
u
(j),l+1
i +

1

µ
ξ
(j),l
i

)
(18b)

Reduced Non-Duplicate
Centralized Problem

(RNDCP)
Decentralized Problem

Reduced Duplicate
Centralized Problem

(RDCP)

Original Problem Forward Pass

Backward Pass

Cheaper forward
pass

Cheaper backward pass
(No copy variables)Cheaper backward pass

(Don’t need to form unique constraints)

Fig. 1: Relationship between RNDCP, RDCP (22) and the
Decentralized Problem (Section V).

where ξ
(j)
i is the part of the dual variable ξi corresponding

to the constraint u(i)
j = gj . Finally, the dual variables updates

will be,

yl+1
i = yl

i + ρ(z̃l+1
i − ẑl+1

i) (19a)

ξl+1
i = ξli + µ(ũl+1

i − g̃l+1
i). (19b)

Since each variable with subscript i being updated only
requires variables that have the same subscript and hence also
belong to agent i, the algorithm composed by the updates (17),
(18), (19) can be executed in a fully decentralized manner
since all updates can be performed in parallel by each agent.
During every ADMM iteration, two communication steps are
required. The first takes place after the updates (17) have been
completed by all agents, where every agent j ∈ Pi must send
its variables ũl+1

j and ξlj to each agent i. After the updates
(18) take place, every agent j ∈ Ni must send gl+1

j to agent
i, so that the latter can construct the vector g̃l+1

i .
It should be highlighted that the Nineq,i = r+No constraints

involved in each of the local subproblems, in parallel solvable,
will be drastically fewer than the Nineq =

(
N
2

)
+ NNo

constraints of the centralized problem for r ≪ N . The
algorithm terminates when the norms of the primal and dual
residuals get below their corresponding tolerance levels,

rpri,a ≤ ϵpri,a, rdual,a ≤ ϵdual,a, ∀a = 1, 2.

Detailed expressions for the residual norms rpri,a, rdual,a and
the tolerances ϵpri,a, ϵdual,a are provided in the Supplemen-
tary Material.

VI. IMPLEMENTATION DETAILS

We make the following assumption for our implementation,

Assumption 2. All neighborhood sets within a single time
step t, Ni(t), are of equal size r.

This assumption is required to simulate a batch of trajecto-
ries in parallel, thereby allowing training on GPUs. Note that
this is not a very restrictive assumption as we still allow the
individual Ni(t) to change across time.

A. Time Discretization

In order to use deep learning, we consider a Euler-
Maruyama time discretization of (9) and (10) so that back-
propagation through time can be performed on a finite number

of time steps to train the deep network. This is similar to past
deep FBSDE works [33, 34, 35] wherein using a finite time
interval of ∆t, the time horizon is divided into equal intervals
of length T

∆t . The time-discretized equations are,

x[τ + 1] = x[τ] + (f +Gu∗)∆t+Σ
√
∆t ϵ (20)

V [τ + 1] = V [τ]−
[N∑

i=1

(
qi +

1

2
u∗
i
TRiu

∗
i

)]
∆t

+
∂V

∂x

T

Σ
√
∆t ϵ (21)

where ϵ ∼ N (0, I) and τ ∈ J1, T
∆tK.

B. Forward Pass

Similar to past work [33, 35], the forward pass involves
propagating the discretized FBSDE and BSDE forward in time
using (20) and (21). The primary distinction between [35] and
our approach is a new implicit safe layer based on CADMM.
This difference is clear by comparing the unrolled compute
graph shown in figure 2 with that of [35, Figure 1]. The
additional difference from past works is the inclusion of extra
fully-connected layers FCc,FCh and FCV to allow for training
from random initial conditions. These extra networks serve to
initialize the initial cell-state and initial hidden-state of the
LSTM layers and the initial value-function respectively.

C. Backward Pass

Our proposed decentralized Merged CADMM-OSQP solver
is an instantiation of an implicit neural network layer. Hence,
we utilize the implicit function theorem to compute the nec-
essary gradients for the backward pass.

To compute the gradients, we solve a KKT system resulting
from the following QP,

min
u

H(u)

s.t. Cu ≤ d (22)

where d = [d1; d2; . . . ; dNr] and C can be constructed
from the neighborhood constraint matrices Ai (please see
supplementary material). As a result, C will contain a subset
of the original Nineq constraints. Additionally, if two agents
i, j are mutual neighbors, i.e., j ∈ Ni and i ∈ Nj , then
the constraint involving i and j will appear twice in C
(i.e., as duplicate row entries). We therefore refer to (22) as
the Reduced Duplicate Centralized Problem. There are two
reasons we choose this problem for solving the backward pass
over the original Reduced Non-Duplicate Centralized Problem
(RNDCP):

1) Construction of the non-duplicate constraint matrix C̄
requires checking if mutual neighbors exist for every
agent which does not scale for large N

2) C can be easily constructed using the matrices Ai used
in the forward pass of Merged CADMM-OSQP

To justify the usage of (22), we make the following assumption
about the corresponding RNDCP:

Merged
CADMM-OSQP

Safe Layer

Merged
CADMM-OSQP

Safe Layer

V2

 x0

LSTM

Vx,0

V0

FC

 x1

Vx,1

V1

 xN−1

Vx,N−1

VN−1

 xN

Vx,N

VN

 x2

Vx,2

ℒoss

V*N

 Δw0 Δw1 ΔwN−1 ΔwN

 Δw0 Δw1 ΔwN−1 ΔwN

V*x,NLSTM LSTM LSTM LSTM

FC FC FC FCMerged
CADMM-OSQP

Safe LayerFCh

FCc

FCV

ℒoss = 𝔼[Vx,N − V*x,N
2
2

+ (VN − V*N)2]FC Fully-Connected Layer

Fig. 2: Unrolled Deep FBSDE compute graph using the proposed Merged CADMM-OSQP implicit safe layer.

Assumption 3. The QP of the non-duplicate problem satisfies
the LICQ (Linear Independence Constraint Qualification), i.e.,
the active constraints of the matrix C̄ are linearly independent.

Constraint qualifications are necessary for optimal solutions
to constrained optimization problems to satisfy the KKT
conditions. LICQ is one of the most frequently used constraint
qualification in optimization literature [31]. In our case, we
additionally rely on LICQ to ensure that the Lagrange multi-
pliers satisfying the KKT conditions are unique [46, Section
3]. The connection between the duplicate problem (22) and
the corresponding RNDCP is shown in the following lemma.

Lemma 1. Let D := {Di}mi=1 with Di := {cdi,j
}ni
j=1

denote the set of equivalence classes induced by the equality
equivalence relation

cdi,a ∼ cdi,b
⇐⇒ cdi,a = cdi,b

, ∀a, b ∈ J1, niK∀i (23)

where di,j denotes the row corresponding to the jth instance
of the ith unique constraint. In other words, all constraint
rows in Di for a particular i refer to the same constraint
and ni denotes the number of duplicates of constraint C̄i.
Suppose that R is positive definite and LICQ holds for the
non-duplicate problem. Then,

λnondup,i =

ni∑
j=1

λdup,di,j
(24)

λnondup,i dλnondup,i =

ni∑
j=1

λdup,di,j dλdup,di,j (25)

where λdup,λnon-dup denotes the Lagrange multipliers and
dλdup,dλnon-dup denotes the variables of the KKT system for
the duplicate and non-duplicate problems respectively.

The above lemma then allows to prove the following theo-
rem.

Theorem 1. Let M denote the matrix describing the rela-
tionship between the duplicate and non-duplicate constraints:

C = MC̄, d = Md̄ (26)

Then, for loss ℓ, the gradients ∇Rℓ,∇qℓ,∇C̄ℓ,∇d̄ℓ coincide
for the duplicate and non-duplicate problems and are unique.

Proof Sketch: We first show that the gradients
∇Rℓ,∇qℓ,∇C̄ℓ,∇d̄ℓ depend only on du and the sums of
λ and dλ associated to each unique constraint of matrix C̄.
Applying Lemma 1 then shows that the theorem holds.

We refer the reader to our supplementary for a proof of
Lemma 1 and Theorem 1. In practice, there may be situations
at certain time steps when Assumption-3 is violated, in which
case the computed gradient serves as a noisy version of the
true gradient.

D. Penalty Parameters Adaptation

The selection of the penalty parameters ρ and µ is important
since the former encourages the satisfaction of the local
constraints of each agent subproblem, while the latter en-
courages achieving consensus. Low values of these parameters
could result to slow convergence of the algorithm or unsafe
solutions. On the other hand, if their values are too high then

their corresponding terms in (17) will dominate the objective
function. To accommodate for this, we adopt the following
adaptation schemes for the penalty parameters from OSQP
[44]:

ρl+1 = ρl

√
rlpri,1/κ

l
pri,1

rldual,1/κ
l
dual,1

, µl+1 = µl

√
rlpri,2/κ

l
pri,2

rldual,2/κ
l
dual,2

.

E. Additional Constraints for Local Subproblems

In the algorithm proposed in Section V, achieving
consensus—and thus ensuring the safety of the agents—fully
relies on ADMM. To facilitate reaching a consensus, we
suggest including in every subproblem of agent i: i) the
obstacle avoidance constraints of its neighbors, and/or ii) the
inter-agent constraints between its neighbors. The number of
these additional constraints will be rNo and

(
r
2

)
, respectively.

Even after incorporating these constraints, we emphasize that,
for r ≪ N , the new Nineq,i = r+No + rNo +

(
r
2

)
constraints

in each agent’s local QP will still be substantially smaller than
the Nineq =

(
N
2

)
+NNo of the centralized problem.

VII. SIMULATION RESULTS

We test the proposed approach on a system consisting of
multiple agents with unicycle dynamics (similar to [50, Section
V.B]) for any agent i given by,

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = viu
θ
i , v̇i = uv

i

Constructing a state vector xi = [xi; yi; θi; vi] and a control
vector ui = [uθ

i ; u
v
i] and assuming that noise only enters the

acceleration channels, the stochastic dynamics for agent i can
be written as,

dxi = fidt+Giuidt+Σidwi

where fi, Gi, and, Σi are given by,

fi =

vi cos(θi)
vi sin(θi)

0
0

 , Gi =

0 0
0 0
vi 0
0 1

 , Σi =

0 0 0 0
0 0 0 0
0 0 σ 0
0 0 0 σ

For our simulations we consider obstacle avoidance and col-
lision avoidance safety constraints in four different types of
tasks. These constraints are stated as functions of the positions
of the agents and are therefore relative degree 2 (i.e., one needs
to differentiate twice before the control shows up). However,
the aforementioned SCBF in (7) assumes that the relative
degree of h is 1. This is required to ensure that ∂B

∂x

T
G is

not zero. Therefore, the original position constraint, which
we hereon refer to as hpos(x), must be modified to ensure
that the modified function has relative degree 1. In [35], this
modification takes the following form,

h(x) = hpos(x)− µ v2 (27)

The parameter µ controls how fast the system can safely move
inside the safe set and thereby, the implication of adding the
−µ v2 term introduces constraints on the velocity in addition
to the original position constraint. Intuitively, when hpos = 0,

for the system to stay safe (i.e., h ≥ 0), the only allowable
safe velocity is v = 0.

The main drawbacks of (27) are that it does not take into
account the heading of the agents and that it penalizes positive
and negative velocities equally. To overcome these we propose
the following two types of barrier functions,

1) Type-A: This is a pairwise safety constraint concerning
two agents and is constructed as follows:

hA(x) = hA
pos(x)− µ (vi IPi + vj IPj) (28)

where, hA
pos(x) =

1

2

(
(xi − xj)

2 + (yi − yj)
2 − 4r2

)
,

IPi = p̄Tij θ̄i, and, IPj = p̄Tjiθ̄j

for any two agents i and j, each with a radius of r. The
inner-product (IP) terms depend on vectors p̄ij and p̄ji
which denote relative position vectors from i to j and j
to i respectively and on the vectors θ̄i = [cos θi; sin θi]
and θ̄j = [cos θj ; sin θj] which denote unit vectors along
the headings of agents i and j respectively.

2) Type-B: This type of safety constraint concerns an agent
i and an obstacle o. It is constructed as follows,

hB(x) = hB
pos(x)− µ vi IP (29)

where, hB
pos(x) =

1

2

(
(xi − xo)

2 + (yi − yo)
2 − (ri + ro)

2
)
,

and IP = p̄Tioθi (30)

where, (xo, yo) is the position of the obstacle’s center
and ro is the obstacle’s radius. The vectors p̄io and θi
are defined similar to the type-A constraint above.

Similar to work in [35] our simulations are also conducted
in a safe reinforcement learning setting where it is required
to be safe not only during inference but also during the entire
training process. The reader is encouraged to refer to the video
included in the supplementary material to support this claim.
The video shows the gradual emergence of optimal behavior as
iterations progress, for each of the tasks described below, while
staying safe during the entire training process. Additionally,
the video depicts the behavior of a single batch instance on the
left and distributions over entire batches on the right wherein
agents are depicted as particles. The video on the right also
demonstrates successful performance on average as justified
by our choice of the mean cost function (3).

A. Swapping Task

We first consider the swapping cars task presented in [35].
We show that our proposed approach is not only scalable
to larger teams of cars but can handle added complexity of
obstacle avoidance. Each agent’s goal is to swap positions with
the diametrically opposite one while avoiding collisions. In
Fig. 4a, the distributions of the positions show that the agents
avoid collisions with a high probability. On closer inspection,
one can argue that the problem is highly symmetrical as
no matter where you stand on the initial circle, each agent
effectively solves a similar problem. Therefore, one could
be lead to believe that this is not a difficult problem for a

deep network to solve. To prove that our approach can handle
more complex scenarios, we added extra obstacles to create an
asymmetrical version of the same problem. The final policy is
depicted in Fig. 4b. As seen in the figure, the cars on the top
right quadrant encounter obstacles much sooner along with
encountering their neighbors. Observing the second plot of
Fig. 4b, we see that the final policy now leads to the agents
circling around the new highly non-convex obstacle shape in
order to complete the task.

B. Bottleneck Task

For this task the agents are required to pass through the
bottleneck in the center (created by multiple circular obstacles)
and achieve a desired formation on the other side of the
bottleneck as seen in Fig. 5a. To train this policy we designed
the running cost qi(x), and terminal cost ϕi(x), such that
the task is divided into two objectives - (i.) pass through the
bottleneck, and, (ii.) achieve the desired formation. This was
done to encourage the agents to prioritize passing through the
bottleneck, before attempting to achieve the desired formation
on the other side. Without the first objective, many agents end
up getting stuck in the highly non-convex regions between the
circular obstacles while others pass through the bottleneck and
move to their respective targets. Thus, the first objective helps
avoid these undesirable local minima. The first objective was
achieved by setting a target for the agents in the column close
to the bottleneck at a point on the x-axis further away from
the bottleneck and setting a target for the agents in the second
column at a point on the x-axis close to the bottleneck. This
intermediate target was set for 80% of the time horizon. For
the remaining 20%, the targets were set so as to achieve the
desired formation on the other side. For this task, we chose
r = 3 with each neighborhood containing r type-A constraints
between ego agent and neighbors and 6 type-B constraints
between the ego agent and the obstacles.

C. Moving-obstacle (or uncooperative agent) Task

The goal of this task is the same as the swapping task
with the added complexity of a moving obstacle. The moving
obstacle can be interpreted as an uncooperative agent (i.e.,
one that cannot be controlled) and moves from bottom to top
along the y-axis as seen in Fig. 5b. To train this policy, we first
trained a policy containing the 8 agents without any obstacle
on the swapping task. This pre-trained policy was then used
as an initialization to train the policy to swap while avoiding
an oncoming moving obstacle. The reason for this two step
process being that a completely random initial policy is unable
to safely explore in the presence of the moving obstacle. A
common scenario that arises when one attempts to train the
policy from scratch is that the agents try to directly move
to their diametrically opposite targets but then come to a
halt and congregate around the center because they encounter
other agents. However, as the moving obstacle approaches,
the closest agent to the obstacle is inevitably run-over by
the moving obstacle, as it has no where to escape. Using
a pre-trained policy embeds the agents with the ability to

move away from the moving obstacle’s path as they have pre-
learned a behavior to initiate a coordinated turn in order to
avoid colliding with other agents. For this task, we used a
neighborhood size of r = 3 with r type-A constraints between
the ego-agent and its neighbors and r + 1 type-B constraints
for the ego-agent and its neighbors.

D. Large-Scale Formation Task

Here, we demonstrate the scalability of our framework by
considering a task where a large-scale team of 32 agents
must reach a to desired rectangular formation. Each agent
has r = 6 neighbors. The obstacle avoidance constraints for
the neighbors are also taken into consideration in every local
subproblem to facilitate reaching a consensus. As shown in
Fig. 5c, the distributions of the positions of agents successfully
reach close to the desired targets.

VIII. DISCUSSION

A. Constraints Reduction and Increased Memory Efficiency

In Table I, we compare the number of constraints considered
by the centralized and decentralized approaches for each task
presented in Section VII. Clearly, there is a substantial reduc-
tion on the number of constraints when using the proposed
approach, implying that it is more scalable to large-scale
systems than the equivalent centralized one. Table II also
demonstrates the reduced required memory usage and training
iteration time of our approach.

B. Low Position Constraint Violation

In Figure 3, the top and bottom plots show the fraction
of batch instances where h < 0 and hpos < 0, respectively,
against the number of training iterations. For all tasks, hpos < 0
occurs much less frequently as compared to h < 0. This
indicates that although there are many instances of h violations
(i.e., agents moving with unsafe velocities in the vicinity
of other agents or other obstacles), the number of physical
collisions between agents or between agents and obstacles
are much lower or even zero for some tasks. Thus, the new
type-A and type-B barrier formulations allow for more aggres-
sive behavior as compared to (27) which instead encourages
conservative behaviors and therefore cannot scale for large
numbers of agents. Another interesting observation is the sharp
decline in hpos violations after around 40% of the total number
of iterations. An intuitive explanation of this is that position
violations only occur during the initial exploration phase.

IX. CONCLUSION

In this work, we introduced a novel and scalable deep-
learning-based framework that extends the existing deep FB-
SDE framework to decentralized multi-agent safe stochastic
optimal control problems. To achieve this, we proposed a
new stochastic CBF formulation which encourages aggressive
motion of moving agents, while still guaranteeing their safe
operation with a high probability. Furthermore, we reformu-
lated the multi-agent per-time-step Hamiltonian minimization
problem into a decentralized version, which we solve by

Task Number of Agents Decentralized Centralized

Swapping 16 5 136
Bottleneck 8 10 76

Moving obstacle 8 9 36
Large-scale formation 32 16 560

TABLE I: Comparison of number of constraints between the centralized problem and each local subproblem of the proposed
decentralized approach.

Max Memory Allocated (MiB) Time per Training Iteration (s)

Batch Size Decentralized Centralized Percent Reduction Decentralized Centralized Percent Reduction

32 1586 17879 -91.13% 14.75 1306 -98.87%
64 3124 N/A N/A 17.92 N/A N/A
384 18510 N/A N/A 38.30 N/A N/A

TABLE II: Comparison of memory usage (maximum of 10 iterations) and time per iteration (average over 10 iterations)
between the decentralized and centralized formulations. The N/A values for batch sizes 64 and 384 indicate that the computer
ran out of memory and was unable to run a single iteration.

0.0

0.5

F
ra

ct
io

n
of

C
on

st
ra

in
t V

io
la

tio
ns

h

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Training Iteration

0.0

0.1

F
ra

ct
io

n
of

C
on

st
ra

in
t V

io
la

tio
ns

hpos

Bottleneck
Moving
Obstacle
One
Obstacle
Swap
Three
Obstacle
Swap
Two
Obstacle
Swap
Formation

Fig. 3: Constraint Violations

proposing a novel distributed ADMM-based method for large-
scale quadratic optimization problems. The framework was
successfully tested in simulation on several challenging multi-
vehicle tasks with higher complexity and more agents as
compared to previous work using a centralized approach and
simpler tasks. The results demonstrate that the agents maintain
their safe operation during training, thus the framework can
also be appreciated from a safe reinforcement learning per-
spective. Finally, the scalability of the approach in terms of
memory usage and training time is also validated.

REFERENCES

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and Zico Kolter. Differ-
entiable convex optimization layers. arXiv preprint
arXiv:1910.12430, 2019.

[2] Javier Alonso-Mora, Eduardo Montijano, Mac Schwager,
and Daniela Rus. Distributed multi-robot formation
control among obstacles: A geometric and optimization

approach with consensus. In 2016 IEEE international
conference on robotics and automation (ICRA), pages
5356–5363. IEEE, 2016.

[3] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and
Paulo Tabuada. Control barrier function based quadratic
programs for safety critical systems. IEEE Transactions
on Automatic Control, 62(8):3861–3876, 2016.

[4] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gen-
naro Notomista, Koushil Sreenath, and Paulo Tabuada.
Control barrier functions: Theory and applications. In
2019 18th European Control Conference (ECC), pages
3420–3431. IEEE, 2019.

[5] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Interna-
tional Conference on Machine Learning, pages 136–145.
PMLR, 2017.

[6] Brandon Amos and Denis Yarats. The differentiable
cross-entropy method. In International Conference on
Machine Learning, pages 291–302. PMLR, 2020.

[7] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob
Sacks, Byron Boots, and J Zico Kolter. Differentiable
mpc for end-to-end planning and control. arXiv preprint
arXiv:1810.13400, 2018.

[8] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep
equilibrium models. arXiv preprint arXiv:1909.01377,
2019.

[9] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed
optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc,
2011.

[10] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David Duvenaud. Neural ordinary differential equations.
arXiv preprint arXiv:1806.07366, 2018.

[11] Tianrong Chen, Ziyi O Wang, Ioannis Exarchos, and
Evangelos Theodorou. Large-scale multi-agent deep fb-
sdes. In International Conference on Machine Learning,
pages 1740–1748. PMLR, 2021.

t = 0 t = 1/3T t = 2/3T t = T

(a) Symmetrical Swapping Task with One Obstacle and 16 Agents.

(b) Unsymmetrical Swapping Task with Three Obstacles and 16 Agents.

Fig. 4: In all figures, the black circles indicate obstacles and the X markers indicate target positions for each agent with the same
color as the marker. The snapshots demonstrate the positions of each agent for each batch at time instants t = 0, 1/3T, 2/3T, T
with the fully trained policy. The proposed approach can not only handle symmertical problems similar to [35], but can also
successfully solve unsymmertical problems.

[12] Richard Cheng, Gábor Orosz, Richard M Murray, and
Joel W Burdick. End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous
control tasks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 3387–3395,
2019.

[13] Zilong Cheng, Jun Ma, Xiaoxue Zhang, Clarence W
de Silva, and Tong Heng Lee. Admm-based parallel op-
timization for multi-agent collision-free model predictive
control. arXiv preprint arXiv:2101.09894, 2021.

[14] Andrew Clark. Control barrier functions for stochastic
systems. Automatica, 130:109688, 2021.

[15] Jorge Cortes, Sonia Martinez, Timur Karatas, and
Francesco Bullo. Coverage control for mobile sensing
networks. IEEE Transactions on robotics and Automa-
tion, 20(2):243–255, 2004.

[16] Ioannis Exarchos and Evangelos A Theodorou. Stochas-
tic optimal control via forward and backward stochastic
differential equations and importance sampling. Auto-
matica, 87:159–165, 2018.

[17] Ioannis Exarchos, Evangelos A Theodorou, and Panagio-
tis Tsiotras. Game-theoretic and risk-sensitive stochastic
optimal control via forward and backward stochastic

differential equations. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6154–6160. IEEE,
2016.

[18] Ioannis Exarchos, Evangelos A Theodorou, and Panagi-
otis Tsiotras. Stochastic l1-optimal control via forward
and backward sampling. Systems & Control Letters, 118:
101–108, 2018.

[19] Ioannis Exarchos, Evangelos Theodorou, and Panagiotis
Tsiotras. Stochastic differential games: A sampling
approach via fbsdes. Dynamic Games and Applications,
9(2):486–505, 2019.

[20] Ioannis Exarchos, Marcus A Pereira, Ziyi Wang, and
Evangelos A Theodorou. Novas: Non-convex optimiza-
tion via adaptive stochastic search for end-to-end learning
and control. arXiv preprint arXiv:2006.11992, 2020.

[21] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learn-
ing, pages 1126–1135. PMLR, 2017.

[22] Trevor Halsted, Ola Shorinwa, Javier Yu, and Mac
Schwager. A survey of distributed optimization
methods for multi-robot systems. arXiv preprint
arXiv:2103.12840, 2021.

t = 0 t = 1/3T t = 2/3T t = T

(a) Bottleneck task with 8 agents.

(b) Swapping task with 8 agents and a moving obstacle (uncooperative agent).

(c) Large-scale formation task with 32 agents.

Fig. 5: Similar to Fig. 4, black circles indicate obstacles and the X markers indicate target positions. The top and bottom rows
involve static obstacles, while the center row considers a moving obstacle.

[23] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving
high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sci-
ences, 115(34):8505–8510, 2018.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[25] Harold J Kushner. Stochastic stability and control.
Technical report, Brown Univ Providence RI, 1967.

[26] Viet-Anh Le and Truong X Nghiem. Gaussian process
based distributed model predictive control for multi-
agent systems using sequential convex programming and
ADMM. In 2020 IEEE Conference on Control Technol-
ogy and Applications (CCTA), pages 31–36. IEEE, 2020.

[27] Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen,
and David Duvenaud. Scalable gradients for stochastic

differential equations. In International Conference on
Artificial Intelligence and Statistics, pages 3870–3882.
PMLR, 2020.

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971, 2015.

[29] Jacob Mattingley and Stephen Boyd. Cvxgen: A code
generator for embedded convex optimization. Optimiza-
tion and Engineering, 13(1):1–27, 2012.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[31] Jorge Nocedal and Stephen Wright. Numerical optimiza-
tion. Springer Science & Business Media, 2006.

[32] Reza Olfati-Saber. Flocking for multi-agent dynamic
systems: Algorithms and theory. IEEE Transactions on
automatic control, 51(3):401–420, 2006.

[33] Marcus Pereira, Ziyi Wang, Ioannis Exarchos, and Evan-
gelos A Theodorou. Learning deep stochastic optimal
control policies using forward-backward sdes. arXiv
preprint arXiv:1902.03986, 2019.

[34] Marcus Pereira, Ziyi Wang, Tianrong Chen, Emily Reed,
and Evangelos Theodorou. Feynman-kac neural network
architectures for stochastic control using second-order
fbsde theory. In Learning for Dynamics and Control,
pages 728–738. PMLR, 2020.

[35] Marcus Aloysius Pereira, Ziyi Wang, Ioannis Exarchos,
and Evangelos A Theodorou. Safe optimal control using
stochastic barrier functions and deep forward-backward
sdes. arXiv preprint arXiv:2009.01196, 2020.

[36] V. Rostampour and T. Keviczky. Distributed stochastic
model predictive control for large-scale linear systems
with private and common uncertainty sources, 2019.

[37] Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. A
barrier function approach to finite-time stochastic system
verification and control. Automatica, 125:109439, 2021.

[38] Augustinos D Saravanos, Alexandros Tsolovikos, Ef-
stathios Bakolas, and Evangelos Theodorou. Dis-
tributed Covariance Steering with Consensus ADMM
for Stochastic Multi-Agent Systems. In Proceedings of
Robotics: Science and Systems, Virtual, July 2021. doi:
10.15607/RSS.2021.XVII.075.

[39] Meenakshi Sarkar, Debasish Ghose, and Evangelos A
Theodorou. High-relative degree stochastic con-
trol lyapunov and barrier functions. arXiv preprint
arXiv:2004.03856, 2020.

[40] Steven E Shreve. Stochastic calculus for finance II:
Continuous-time models, volume 11. Springer Science
& Business Media, 2004.

[41] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[42] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[43] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and
S. Boyd. OSQP: an operator splitting solver for quadratic
programs. Mathematical Programming Computation, 12
(4):637–672, 2020. doi: 10.1007/s12532-020-00179-2.
URL https://doi.org/10.1007/s12532-020-00179-2.

[44] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Al-
berto Bemporad, and Stephen Boyd. Osqp: An operator
splitting solver for quadratic programs. Mathematical
Programming Computation, 12(4):637–672, 2020.

[45] Wentao Tang and Prodromos Daoutidis. Fast and sta-
ble nonconvex constrained distributed optimization: the
ellada algorithm. Optimization and Engineering, pages
1–43, 2021.

[46] Gerd Wachsmuth. On licq and the uniqueness of lagrange
multipliers. Operations Research Letters, 41(1):78–80,
2013.

[47] Li Wang, Evangelos A Theodorou, and Magnus Egerst-
edt. Safe learning of quadrotor dynamics using barrier
certificates. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 2460–2465.
IEEE, 2018.

[48] Ziyi Wang, Keuntaek Lee, Marcus A Pereira, Ioannis
Exarchos, and Evangelos A Theodorou. Deep forward-
backward sdes for min-max control. In 2019 IEEE
58th Conference on Decision and Control (CDC), pages
6807–6814. IEEE, 2019.

[49] Wei Xiao and Christos G Cassandras. Decentralized
optimal merging control for connected and automated
vehicles. In 2019 American Control Conference (ACC),
pages 3315–3320. IEEE, 2019.

[50] Zhaoming Xie, C Karen Liu, and Kris Hauser. Differ-
ential dynamic programming with nonlinear constraints.
In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 695–702. IEEE, 2017.

[51] Shakiba Yaghoubi, Keyvan Majd, Georgios Fainekos,
Tomoya Yamaguchi, Danil Prokhorov, and Bardh Hoxha.
Risk-bounded control using stochastic barrier functions.
IEEE Control Systems Letters, 5(5):1831–1836, 2020.

https://doi.org/10.1007/s12532-020-00179-2

	Introduction
	Notation
	Problem Formulation
	Centralized Solution Using Deep FBSDEs
	Decentralized Approach
	Decentralized Problem
	Merged CADMM-OSQP Method

	Implementation Details
	Time Discretization
	Forward Pass
	Backward Pass
	Penalty Parameters Adaptation
	Additional Constraints for Local Subproblems

	Simulation Results
	Swapping Task
	Bottleneck Task
	Moving-obstacle (or uncooperative agent) Task
	Large-Scale Formation Task

	Discussion
	Constraints Reduction and Increased Memory Efficiency
	Low Position Constraint Violation

	Conclusion

